跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.89) 您好!臺灣時間:2024/12/12 03:02
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:施雅馨
論文名稱:台灣黑翅土白蟻(Odontotermesformosanus)腸道共生菌功能群之研究
指導教授:賴吉永賴吉永引用關係
學位類別:碩士
校院名稱:國立彰化師範大學
系所名稱:生物學系
學門:生命科學學門
學類:生物學類
論文種類:學術論文
論文出版年:2003
畢業學年度:91
語文別:中文
論文頁數:85
中文關鍵詞:台灣黑翅土白蟻腸道共生菌功能群
外文關鍵詞:Odontotermes formosanus
相關次數:
  • 被引用被引用:5
  • 點閱點閱:463
  • 評分評分:
  • 下載下載:70
  • 收藏至我的研究室書目清單書目收藏:0
台灣黑翅土白蟻 (Odontotermes formosanus) 為一種高等白蟻。雞肉絲菇(Termitomyces albuminosus)只長於台灣黑翅土白蟻的巢穴上,兩者間為共生關係。目前仍無法經由人工栽培方式養殖雞肉絲菇,因此台灣黑翅土白蟻對其生長有極為重要的影響。構成此種白蟻巢穴的物質含有高濃度二氧化碳、蟻酸及白蟻半消化纖維素和木質素排泄物。這些物質多為白蟻的代謝產物,由此推論影響雞肉絲菇生長的因素可能跟白蟻的代謝,即其腸道共生菌和其功能有關。故本實驗的目的在以改良式PCR-SSCP (PCR-Single-Strand-Conformation Polymorphism) 及 定序 (Sequencing) 的方法,分析台灣黑翅土白蟻腸道中的原始共生菌菌相及經過不同碳源培養後的共生菌相變化。藉以瞭解台灣黑翅土白蟻腸道共生菌之功能群。我們以改良式PCR-SSCP偵測發現在八卦山脈三個區域的台灣黑翅土白蟻原始腸內共生菌具有基本相同的菌相,但會依不同時間及地點腸內共生菌的優勢種會有變化。在原始菌相中皆以厭氧Bacteroides和spirochete為主,經過培養後各碳源的菌相簡單,出現的菌種以Enterobacteriaceae、Enterococcaceae為主,各碳源的功能群菌皆屬於初級發酵群。Lactate、propionate、butyrate可能是聯繫初級發酵群集二級發酵群間的主要碳源分子。希望藉由瞭解白蟻原始腸道基本菌相及培養後腸道菌種的變化,在未來可提供種植雞肉絲菇、白蟻生態研究及生物防制等的參考。
Odontotermes formosanus is one of the higher termites that cultivate the fungus Termitomyces albuminosus. Recent studies showed that the termite-fungus relationship is a symbiotic one. T. albuminosus only grows on O. formosanus nests and can not be cultivated in vitro. As a result, the survival of T. albuminosus completely relies on O. formosanus. The nest of O. formosanus contains high concentrations of carbon dioxide and formic acid, and partially digested cellulose and lignin, which are products of the symbiotic intestinal bacteria of O. formosauns. It seems that these metabolites have great influence on the growth of T. albuminosus. The purpose of this study is to analyze the diversity of original and cultured symbiotic intestinal communities of O. formosanus by using an improved PCR-Single-Strand-Conformation Polymorphism (PCR-SSCP) method and DNA sequencing to outline the major functional groups in these communities. Native gut bacterial communities of termites from three separate locations had the same basic SSCP patterns. The dominant species differed in each case depending on the collection times and locations. Anaerobic Bacteroides and spirochete were the most numerous bacteria in termite guts. In mixed culture experiments, all carbon sources produced dominant species belonging to the families Enterobacteriaceae and Enterococcaceae. Both families are typical primary fermentative bacteria. Culturing also reduced the complexity of bacterial community. Lactate, propionate and butyrate may be the major substrates connecting the primary fermentative group and the secondary fermentative group. A thorough understanding of both native gut bacterial communities and the cultured symbiotic intestinal communities will facilitate artificial cultivation of T. albuminosus, advance knowledge of termite ecology and improve termite control strategies in the future.
中文摘要 ………………………………………………………………… II
英文摘要 ………………………………………………………………… III
誌謝
導論 …………………………………………………………………… 1
材料與方法 …………………………………………………………… 9
結果 …………………………………………………………………… 15
討論 …………………………………………………………………… 19
參考文獻 ……………………………………………………………… 26
圖 ……………………………………………………………………… 36
表 ……………………………………………………………………… 53
附錄 一 ……………………………………………………………… 71
附錄 二 ……………………………………………………………… 81
Abe, T., D. E. Bignell, and M. Higashi. 2000. Introduction to symbiosis, p.189-208. In Abe et al., Termites: Evolution, Sociality, Symbioses, Ecology. Kluwer Academic Publishers, Netherland.
Abraham, W. R., C. Strompl, H. Meyer, S. Lindholst, E. R. Moore, R. Christ, M. Vancanneyt, B. J. Tindall, A. Bennasar, J. Smit, and M. Tesar. 1999. Phylogeny and polyphasic taxonomy of Caulobacter species. proposal of Maricaulis gen. nov. with Maricaulis maris (Poindexter) comb. nov. as the type species, and emended description of the genera Brevundimonas and Caulobacter. Int. J. Syst. Bacteriol. 49 Pt 3: 1053-73.
Ahring, B. K., and P. Westermann. 1987. Thermophilic anaerobic degradation of butyrate by a butyrate-utilizing bacterium in coculture and triculture with methanogenic bacteria. Appl. Environ. Microbiol. 53: 429-433.
Amann, R. I., W. Ludwig, and K. Schleifer. 1995, Phylogenetic identification and In Situ detection of individual microbial cells without cultivation. Microbiol. Rev. 59: 143-169.
Anklin-mühlemann, R., D. E. Bignell, P. C. Veivers, R. H. Leuthold, and M. Slaytor. 1995. Morphological, microbiological and biochemical studies of the gut flora in the fungus growing termite Macrotermes subhyalinus. J. Insect. Physiol. 41: 929-940.
Bassam, B. J., G. Caetano-Anolles, and P. M. Gresshoff. 1991. Fast and sensitive silver staining of DNA in polyacrylamide gels. Anal. Biochem. 196: 80-83.
Ben-bassat, A., R. Lamed, and J. G. Zeikus. 1981. Ethanol production by thermophilic bacteria: metabolic control of end product formation in Thermoanaerobium brockii. J. Bacteriol. 146: 192-199.
Bignell, D. E., H. Oskarsson, and J. M. Anderson. 1979. Association of actinomycete-like bacteria with soil-feeding termites ( Termitidae: Termitinae ). Appl. Environ. Microbiol. 37: 339-342.
Boone, D. R., and M. P. Braynt. 1980. Propionate-degrading bacterium, Syntrophobacter wolinii sp. nov. gen. nov., from methanogenic ecosystems. Appl. Environ. Microbiol. 40: 626-632.
Boschker, H. T. S., W. de Graaf, M. Köster, L. —A. Meyer-Reil, and T. E. Cappenberg. 2001. Bacterial populations and processes involved in acetate and propionate consumption in anoxic brackish sediment. FEMS Microbiol. Ecol. 35: 97-103.
Brauman, A., J. Doré, P. Eggleton, D. Bignell, J. A. Breznak, and M. D. Kane. 2001. Molecular phylogenetic profiling of prokaryotic communities in guts of termites with different feeding habits. FEMS Microbiol. Ecol. 35: 27-36.
Brauman, A., M. D. Kane, M. Labat, and J. A. Breznak. 1992. genesis of acetate and methane by gut bacteria of nutritionally diverse termites. Science (Wash.). 257: 1384-1387.
Breznak, J. A. 1982. Intestinal microbiota of termites and other xylophagous insects. Annu. Rev. Microbiol. 36: 323-343.
Breznak, J. A., and A. Brune. 1994. Role of microorganisms in the digestion of lignocellulose by termites. Annu. Rev. Entomol. 39: 453-487.
Brune, A., and M. Friedrich. 2000. Microecology of the termite gut: structure and function on a microscale. Curr. Opin. Microbiol. 3: 263-269.
Brune, A., D. Emerson, and J. A. Breznak. 1995. The termite gut microflora as an oxygen sink: Microelectrode determination of oxygen and pH gradients in guts of lower and higher termites. Appl. Environ. Microbiol. 61: 2681-2687.
Bryant, M. P., L. L. Campobell, C. A. Reddy, and M. R. Crabill. 1977. Growth of Desulfovibrio in lactate or ethanol media low in sulfate in association with H2-utilizing methanogenic bacteria. Appl. Environ. Microbiol. 33: 1162-1169.
Cole J. R., B. Chai, T. L. Marsh, R. J .Farris, Q. Wang, S. A. Kulam, S. Chandra, D. M. McGarrell, T. M. Schmidt, G. M. Garrity, and J. M. Tiedje. 2003. The Ribosomal Database Projec (RDP-II): previewing a new autoaligner that allows regular updates and the new prokaryotic taxonomy. Nucleic Acids Res. 31: 442-443.
Crosland, M. W. J., L. K. Chan, and J. A. Buswell. 1996. Symbiotic fungus and enzymatic digestion in the gut of the termite, Macrotermes barneyi (Light) (isoptera: Termitidae). J. Entomol. Sci. 31: 132-137.
Crump, B. C., E. V. Armbrust, and J. A. Baross. 1999. Phylogenetic analysis of particle-attached and free-living bacterial communities in the Columbia river, its estuary, and the adjacent coastal ocean. Appl. Environ. Microbiol. 65: 3192-3204.
Czolij, R., M. Slaytor, and R. W. O’brien. 1985. Bacterial flora of the mixed segment and the hindgut of the higher termite Nasutitermes exitiosus hill (Termitidae, Nasutitermitinae). Appl. Environ. Microbiol. 49: 1226-1236.
Dong, X., C. M. Plugge, and A. J. M. Stams. 1994. Anaerobic degradation of propionate by a mesophilic acetogenic bacterium in coculture and triculture with different methanogens. Appl. Environ. Microbiol. 60: 2834-2838.
Eutick, M. L., R. W. O’Brien, and M. Slaytor. 1978. Bacteria from the gut of Australian termites. Appl. Environ. Microbiol. 35: 823-828.
Fernandez-Garayzabal, J. F., L. Dominguez, C. Pascual, D. Jones, and M. D. Collins. 1995. Phenotypic and phylogenetic characterization of some unknown coryneform bacteria isolated from bovine blood and milk: description of Sanguibacter gen.nov. Lett. Appl. Microbiol. 20(2): 69-75.
Friedrich, M., U. Laderer, and B. Schink. 1991. Fermentative degradation of glycolic acid by defined syntrophic cocultures. Arch. Microbiol. 156: 398-404.
Giraffa, G., L. Rossetti, and E. Neviani. 2000. An evaluation of Chelex-based DNA purification protocols for the typing of lactic acid bacteria. J. Microbiol. Methods. 42: 175-184.
Groβkopf, R., P. H. Janssen, and W. Liesack. 1998. Diversity and structure of the methanogenic community in anoxic rice paddy soil microcosms as examined by cultivation and direct 16S rRNA gene retrieval. Appl. Environ. Microbiol. 64: 960-969.
Hall, T.A. 1999. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl. Acids. Symp. Ser. 41: 95-98.
Henson, J. M., and P. H. Smith. 1985. Isolation of a butyrate-utilizing bacterium in coculture with Methanobacterium thermoautotrophicum from a thermophilic digester. Appl. Environ. Microbiol. 49: 1461-1466.
Holt, J. G., N. R. Krieg, P. H. A. Sneath, J. T. Staley, and S. T. Williams. 1994. In Bergey’s Manual of Determinative Bacteriology. Williams & Wilkins, Baltimore, MD, USA.
Horswill, A. R., and J. C. Escalante-Semerena. 1999. Salmonella typhimurium LT2 catabolizes propionate via the 2-methylcitric acid cycle. J. Bacteriol. 181: 5615-5623.
Hugenholtz, P., B. M. Goebel, and N. R. Pace. 1998. Impact of culture-independent studies on the emerging phylogenetic view of bacterial diversity. J. Bacteriol. 180: 4765-4774.
Ivanova, E. P., T. Sawabe, A. M. Lysenko, N. M. Gorshkova, K. Hayashi, N. V. Zhukova, D. V. Nicolau, R. Christen, and V. V. Mikhailov. 2002. Pseudoalteromonas translucida sp. nov. and Pseudoalteromonas paragorgicola sp. nov., and emended description of the genus. Int. J. Syst. Evol. Microbiol. 52(Pt 5): 1759-66.
Kane, M. D., and J. A. Breznak. 1991. Effect of host diet on production of organic acids and methane by cockroach gut bacteria. Appl. Environ. Microbiol. 57: 2628-2634.
Kudo, T., M. Ohkuma, S. Moriya, S. Noda, and K. Ohtoko. 1998. Molecular phylogenetic identification of the intestinal anaerobic microbial community in the hindgut of the termite, Reticulitermes speratus, without cultivation. Extremophiles. 21: 155-161.
Leadbetter, J. R., T. M. Schmidt, J. R. Graber, and J. A. Brezank. 1999. Acetogenesis from H2 plus CO2 by Spirochetes from termite guts. Science. 283: 686-689.
Lee, D.-H., Y. -G. Zo, and S. -J. Kim. 1996. Noradioactive method to study genetic profiles of natural bacterial communities by PCR-Single-Strand-Conformation Polymorphism. Appl. Environ. Microbiol. 62: 3112-3120.
Lee, M. J., and S. H. Zinder. 1988. Isolation and characterization of thermophilic bacterium which oxidizes acetate in syntrophic association with a methanogen and which grows acetogenically on H2-CO2. Appl. Environ. Microbiol. 54: 124-129.
Leser, T. D., R. H Lindecrona, T. K. Jensen, B. B. Jensen, and K. Møller. 2000. Changes in bacterial community structure in the colon of pigs fed different experimental diets and after infection with Brachyspira hyodysenteriae. Appl. Environ. Microbiol. 66: 3290-3296.
London, R. E., D. L. Allen, S. A. Gabel, and E. F. Derose. 1999. Carbon-13 nuclear magnetic resonance study of metabolism of propionate by Escherichia coli. J. Bacteriol. 181: 3562-3570.
Maczulak, A. E., M. J. Wolin, and T. L. Miller. 1993. Amounts of viable anaerobes, methanogens, and bacterial fermentation products in feces of rats fed high-fiber or fiber-free diets. Appl. Environ. Microbiol. 59: 657-662.
Martin, M. M., and J. S. Martin. 1978. Cellulose digestion in the midgut of the fungus-growing termites Macrotermes natalensis: the role of acquired digestive enzymes. Science. 31: 1453-1455.
McInerney, M. J., M. P. Bryant, R. B. Hespell, and J. W. Costerton. 1981. Syntrophomonas wolfei gen. nov. sp. nov., an anerobic, syntrophic, fatty acid-oxidizing bacterium. Appl. Environ. Microbiol. 41: 1029-1039.
Menter, P. 2000. Electrophoresis: Acrylamide polymerization - a practical approach. Bio-Rad. Tech note 1156.
Miller, D. N., J. E. Bryant, E. L. Madsen, and W. C. Ghiorse. 1999. Evaluation and optimization of DNA extraction and purification procedures for soil and sediment samples. Appl. Environ. Microbiol. 65: 4715-4724.
Miller, T. L., and M. J. Wolin. 1974. A serum bottle modification of the Hungate Technique for cultivating obligate anaerobes. Appl. Environ. Microbiol. 27: 985-987.
Noda, S., M. Ohkuma, R. Usami, K. Horikoshi, and T. Kudo. 1999. Culture-independent characterization of a gene responsible for nitrogen fixation in the symbiotic microbial community in the gut of the termite Neotermes koshunensis. Appl. Environ. Microbiol. 65: 4935-4942.
Ohkuma, M., and T. Kudo. 1996. Phylogenetic diversity of the intestinal bacterial community in the termite Reticulitermes speratus. Appl. Environ. Microbiol. 62: 461-468.
Ohkuma, M., and T. Kudo. 1998. Phylogenetic analysis of the symbiotic intestinal microflora of the termite Cryptotermes domesticus. FEMS Microbiol. lett. 164: 389-395.
Ohkuma, M., S. Noda, and T. Kudo. 1999a. Phylogenetic relationship of symbiotic methanogens in diverse termites. FEMS Microbiol. lett. 171: 147-153.
Ohkuma, M., T. Iida, and T. Kudo. 1999b. Phylogenetic relationship of symbiotic spirochetes in the gut of diverse termites. FEMS Microbiol. lett. 181: 123-129.
Olsen, G. J., D. J. Lane, S. J. Giovannoni, and N. R. Pace. 1986. Microbial ecology and evolution: a ribosomal RNA approach. Ann. Rev. Microbiol. 40: 337-365.
Parkes, J. 1999. Cracking anaerobic bacteria. Nature. 401: 217-218.
Pasti, M. B., A. L. Pometto III, M. P. Nuti, and D. L. Crawford. 1990. Lignin-solubilizing ability of actinomycetes isolated from termite (Termitidae) gut. Appl. Environ. Microbiol. 56: 2213-2218.
Pearce, M. J. 1997a. Termites as Insects, p.1-19. In M.J. Pearce, Termites: Biology and pest Management. CAB INTERNATIONAL, New York.
Pearce, M. J. 1997b. Termites biology and behavior, p.40-64. In M.J. Pearce, Termites: Biology and pest Management. CAB INTERNATIONAL, New York.
Raskin, L., J. M. Stromley, B. E. Rittmann, and D. A. Stahl. 1994. Group-specific 16S rRNA hybridization probes to describe natural communities of Methanogens. Appl. Environ. Microbiol. 60: 1232-1240.
Roy, F., E. Samain, H. C. Dubourguier, and G. Albagnac. 1986. Syntrophomonas sapovorans sp. nov., a new obligately proton reducing anaerobe oxidizing saturated and unsaturated long chain fatty acids. Arch. Microbiol. 145: 142-147.
Schink, B. 1997. Energetics of syntrophic cooperation in Methanogenic degradation. Microbiol. Mol. Bol. Rev. 61: 262-280.
Schmalenberger, A., Schwieger, F., and C. C. Tebbe. 2001.Effect of primers hybridizing to different evolutionarily conserved regions of the small-subunit rRNA gene in PCR-based microbial community analyses and genetic profiling. Appl. Environ. Microbiol. 67: 3557—3563.
Schnürer, A., B. Schink, and B. H. Svensson. 1996. Clostridium ultunense sp. nov., a mesophilic bacterium oxidizing acetate in syntrophic association with a hydrogenotrophic methanogenic bacterium. Int. J. Syst. Bacteriol. 46: 1145-1152.
Schnürer, A., F. P. Houwen, and B. H. Svensson. 1994. Mesophilic syntrophic acetate oxidation during methane formation by a triculture at high ammonium concentration. Arch. Microbiol. 162: 70-74.
Schultz, J. E., and J. A. Breznak. 1978. Heterotrophic bacteria present in hindguts of wood-eating termites[Reticulitermes flavipes (Kollar) ]. Appl. Environ. Microbiol. 35: 930-936.
Schwieger, F., and C. C. Tebbe. 1998. A new approach to utilize PCR-Single-Strand Conformation Polymorphism for 16S rRNA gene-based microbial community analysis. Appl. Environ. Microbiol. 64: 4870-4876.
Shelton, D. R., and J. M. Tiedje. 1984. Isolation and partial characterization of bacteria in an anaerobic consortium that mineralizes 3-chlorobenzoic acid. Appl. Environ. Microbiol. 48: 840-848.
Shida, O., H. Takagi, K. Kadowaki, and K. Komagata. 1996. Proposal for two new genera, Brevibacillus gen. nov. and Aneurinibacillus gen. nov. Int. J. Syst. Bacteriol. 46(4): 939-46.
Stams, A. J. M. 1994. Metabolic interactions between anaerobic bacteria in methanogenic environments. Antonie. Van. Leeuwenhoek. 66: 271-294.
Stieb, M., and B. Schink. 1985. Anaerobic oxidation of fatty acids by Clostridium bryantii sp. nov., a sporeforming, obligately syntrophic bacterium. Arch. Microbiol. 140: 387-390.
Tajima, K., R. I. Aminov, T. Nagamine, H. Matsui, M. Nakamura, and Y. Benno. 2001. Diet-dependent shifts in the bacterial population of the rumen revealed with Real-Time PCR. Appl. Environ. Microbiol. 67: 2766-2774.
Thao, M. L., P. J. Gullan, and P. Baumann. 2002. Secondary (γ-Proteobacteria) endosymbionts infect the primary (ß-Proteobacteria) endosymbionts of mealybugs multiple times and coevolve with their hosts. Appl. Environ. Microbiol.68: 3190-3197.
Tholen, A., B. Schink, and A. Brune. 1997. The gut microflora of Reticulitermes flavipes, its relation to oxygen, and evidence for oxygen-dependent acetogenesis by the most abundant Enterococcus sp. FEMS Microbiol. Ecol. 24: 137-149.
Tokuda, G., I. Yamaoka, and H. Noda. 2000. Localization of symbiotic Clostridia in the mixed segment of the termite Nasutitermes takasagoensis (Shiraki). Appl. Environ. Microbiol. 66: 2199-2207.
Tsang, A. W., A. R. Horswill, and J. C. Escalante-Semerena. 1998. Studies of regulation of expression of the propionate (prpBCDE) operon provide insights into how Salmonella typhimurium LT2 integrates its 1,2-propanediol and propionate catabolic pathways. J. Bacteriol. 180: 6511-6518.
Vandamme, P., E. Falsen, R. Rossau, B. Hoste, P. Segers, R. Tytgat, and J. De Ley. 1991. Revision of Campylobacter, Helicobacter, and Wolinella taxonomy: emendation of generic descriptions and proposal of Arcobacter gen. nov.. Int. J. Syst. Bacteriol. 41(1): 88-103.
Vaneechoutte, M. 1996. DNA fingerprinting techniques for microorganisms a proposal for classification and nomenclature. Mol. Microbial. 6: 115-142.
Varel, V. H., and M. P. Bryant. 1974. Nutritional features of Bacteeroides fragilis subsp. Fragilis. Appl. Microbiol. 18: 251-257.
Voolapalli, R., and D. C. Stuckey. 1999. relative importance of trophic group concentrations during anaerobic degradation of volatile fatty acids. Appl. Environ. Microbiol. 65: 5009-5016.
Zeiku, J. G., and R. S. Wolfe. 1972. Methanobacterium thermoautotrophicus sp. n., an anaerobic, autotrophic, extreme thermophile. J. Bacteriol. 109: 707-713.
Zeikus, J. G., R. Kerby, and J. A. Krzycki. 1985. Single-carbon chemistry of acetogenic and methanogenic bacteria. Science. 227: 1167-1173.
Zengler, K., H. M. Richnow, R. Rossells-Mora, W. Michaelis, and F. Widdel. 1999. Methane formation from long-chain alkanes by anaerobic microorganisms. Nature. 401: 266-269.
Zhou, J., Bruns, M. A., and J. M. Tiedje. 1996. DNA recovery from soil of diverse composition. Appl. Environ. Microbiol. 62: 316-322.
Zinder, S. H., and M. Koch, 1984. Non-aceticlastic methanogenesis from acetate: acetate oxidation by a thermophilic syntrophic coculture. Arch. Microbiol. 138: 263-272.
宋細福,1997. 台灣食藥用菇類之生態與應用圖冊 台灣省農業試驗所特刊66號p.65-72。
邱彩華,2002. 比較放大細菌16S rRNA不同變異區域的SSCP電泳分析效果 學士論文報告 彰化師大生物系。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top