跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.81) 您好!臺灣時間:2024/12/15 04:37
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:蔡紀政
研究生(外文):Chi-Cheng Tsai
論文名稱:台灣不同栽培地區對‘富有’甜柿和‘牛心’澀柿物化特性之研究
論文名稱(外文):Studies on The Physicochemical Properties Changes in ‘Fuyu ’and ‘Zeo-Sin’ Persimmon (Diospyros kaki L.) Grown in Different Location in Taiwan.
指導教授:李瑞興李瑞興引用關係曾慶瀛曾慶瀛引用關係
指導教授(外文):Ruey-Shing Lee ph.DChin-Yin Tseng ph.D.
學位類別:碩士
校院名稱:國立嘉義大學
系所名稱:農學研究所
學門:農業科學學門
學類:一般農業學類
論文種類:學術論文
論文出版年:2003
畢業學年度:91
語文別:中文
論文頁數:74
中文關鍵詞:富有柿牛心柿物化特性
外文關鍵詞:persimmonFuyu persimmonZeo-Sin perismmonphysicochemical properties
相關次數:
  • 被引用被引用:5
  • 點閱點閱:395
  • 評分評分:
  • 下載下載:58
  • 收藏至我的研究室書目清單書目收藏:0
中文摘要
本試驗以台灣不同地區栽培之‘富有’柿和‘牛心’柿為材料,探討
其果實採後一般組成分及物化特性之變化,以期了解不同地區栽培柿子之物化特性及加工適合性,作為柿農種植及加工業者應用之參考。本試驗結果如下:
‘富有’柿其果肉顏色變化,試驗結果:明亮度(L值)和黃色度(b值)在採後貯藏,呈下降趨勢,而紅色度( a值)則有上升現象。物理性狀之影響,以阿里山地區柿子之彈性、粘著性及咀嚼性較東勢地區及番路地區柿子為低。而東勢地區柿子除凝集性較番路地區柿子較低外,其他性狀均較高。一般化學成分之變化,三個不同栽培地區柿子含水率含量均在80%以上,其中以阿里山地區柿子含量較高。果實內碳水化合物、粗蛋白含量之變化,也以阿里山地區柿子含量較高。東勢地區柿子含水率、粗蛋白、粗纖維含量較低,灰分則較高。番路地區柿子碳水化合物、灰分含量較低,而粗纖維含量則較高。
‘牛心’柿果肉顏色之變化,試驗結果:三個不同栽培地區柿子L、a值有顯著性差異,b值北埔地區與番路地區柿子間無顯著性差異,與卑南栽培地區柿子有顯著差異。物理性狀,試驗結果:三個不同栽培地區柿子之彈性、凝集性、粘著性等測值無顯著性差異。凝膠性、硬度、咀嚼度測值則有顯著性差異。一般化學成分之變化,試驗結果:含水率、粗蛋白、灰分含量,以番路地區與北埔地區柿子無顯著性差異,而與卑南地區柿子有顯著性差異。碳水化合物含量,番路地區與卑南地區柿子無顯著性差異,與北埔地區柿子則有顯著性差異。
經由物化特性分析,在不同的栽培環境下,柿果採後性狀的表現各有不同,由此結果顯示,台灣柿果品質性狀之表現受栽培環境影響,因此建議柿農,唯有在適地適作環境下種植,方有高品質之果品。
Abstract
The objective of this study was to investigate the physicochemical properties of ‘Fuyu’ and ‘Zeo-Sin’ persimmon fruit in Taiwan. The obtained results, including color, physical characteristics and composition analysis, will be applied to compare various physicochemical properties and process suitability from different culture area, and could be valuable for farmers and proprietor.
The fruit pulp color of ‘Fuyu’ persimmon was tested after harvest, the results showed that: L and b values were decreased, but a values were increased. For physical characteristics, the levels of springiness, adhesiveness, and chewiness were lower from Alishan area as compared to the samples from Dongshi and Fanlu. All tested characteristics of Dongshi samples were higher than Fanlu samples, except for cohesiveness. The water content were higher than 80% for all samples. Among them, the contents of water, carbohydrates, and crude proteins were highest for the samples from Alishan area. On the other hand, the contents of water, carbohydrates, crude proteins, and fibers were lower for the samples from Dongshi area. For the samples from Fanlu area, the contents of carbohydrates and ash were low, but the content of crude fiber was higher.
The fruit kernel color of ‘Zeo-Sin’ persimmon was tested after harvest, the results showed that: L and b values were significantly different among three sample area. For b value, there were no significantly difference between Beipu and Fanlu area. For physical characteristics, the levels of springiness, cohesiveness, and adhesiveness were not significantly different. However, the levels of gumminess, hardness, and chewiness were significantly different. The contents of water, crude proteins, and ash were not significantly different between Fanlu and Beipu area. For the contents of carbohydrates, the samples of Fanlu and Puyuma area were not signicantly different.
By analyzing the physicochemical properties of harvested persimmon from different cultivation area, the obtained results showed that cultivation environment would greatly affect the persimmon fruit quality.
目 錄 頁次
中文摘要……………………………………………………………….Ⅰ
英文摘要……………………………………………………………….Ⅲ
壹、前言……………………………………………………………….1
貳、前人研究………………………………………………………….4
參、材料與方法………………………………………………………14
肆、結果………………………………………………………… 21
試驗一、栽培地區與貯藏日數對‘富有’柿果果肉物化
特性之影響………………………………………………..........21
試驗二、栽培地區與貯藏日數對‘牛心’柿果果肉物化
特性之影響………………………………………………..........39
伍、討論………………………………………………………………57
陸、參考文獻…………………………………………………………69
參考文獻
王自存。2000。柿子的脫澀。國立台灣大學園藝研究所。非同步網路教學。URL:/http://ceiba.cc.ntu.edu.tw/Postharvest/post2001/course.html.
尤瓊琦、洪滉祐、陳俊明。1996。省產柳橙與進口瓦倫西亞甜橙壓縮潛變特性之比較研究。中華生質能源學會會誌。15:9-17。
行政院農業委員會。2002。作物生產。農業統計年報。行政院農業委員會。
林榮貴。2002。甜柿栽培管理手冊。行政院農業委員會農業試驗所。pp.114。
林欣榜。1985。柿子的脫澀。食品工業。17:25-32。
林欣榜。1995。園產品加工各論。台北。台灣農家要覽。豐年社。pp. 445-447。
吳白玟。2001。柿餅澀味之研究。博士論文。國立台灣大學食品科技研究所pp.149。
高景輝。1994。植物荷爾蒙生理。台北。華香園。pp:114-150。
許鳳麟。1988。單寧及相關化合物之研究。化學。46:282-292。
陳俊明。1980。椪柑機械性質之基礎研究。碩士論文。國立台灣大學農業工程學研究所機械組。
陳俊明、王康男。1982。椪柑負荷鬆弛機械性質之研究。農業工程學報。28:99-105。
陳文彬、郭鳳瑞、林正亮。1997。柿子正向與側向靜壓縮負荷下黏彈特性之研究。嘉義農專學報。52:63-73。
郭鳳瑞、洪滉祐、李春壽、艾群。1996。葡萄柚常溫單層貯藏黏彈性特性之研究(一)。嘉義農專學報。47:63-80。
溫英杰。1995。柿。台北。台灣農家要覽。豐年社。pp.191-198。
廖永為。1987。落葉果樹分類學。台北。五洲出版社。pp.247-255。
鄭雅凌。2001。柿果貯藏之研究。碩士論文。台中:國立中興大學園藝學研究所pp.115。
劉富文。1995。園產品採後處理及貯藏技術。台灣省青果合作社pp.17。
蔡平里。1983。柿之旅。農業推廣手冊-14。台北:國立台灣大學農學院農業推廣委員會。
蔡平里。1997。柿子篇。台北。蔬果芬芳錄。豐年社。pp.88-97。
蔡巨才。1999。柿在台灣的栽培技術改進。博士論文。台北:國立台灣大學園藝研究所pp.88。
蔡瑞真。1994。脫澀方法對柿果軟化之影響。碩士論文。台中:國立中興大學園藝學研究所pp.83。
謝慶昌、林慧玲、林榮貴、陳淑娟、馮詩蘋。1999。脫澀方法及溫度與‘平核無’柿果軟化之關係。中國園藝。45:273-280。
野口裕史、松村博行。1994。果樹試驗成績書。岐阜縣農業總合研究。11:1-32。
傍島善次。1960。柿。東京。朝倉書店。P.121-134。
平井俊次、山崎喜美江。1984。甜柿、澀柿糖組成份之研究。日本食品工業學會誌。31:24~30。
Ahrens, M.J. and D.J. Huber. 1990. Physiology and firmness determination of ripening tomato fruit. Physiol. Plant. 78:8-14.
Akira, S., Y., Keizo, H., Hisashi, and T., Takashi, 1979. Changes of ethanol and acetaldehyde contents in Japanese persimmon fruits and their relation to natural deastringency. Reprinted from studies from institute of horticulture, Kyoto University Vol. IX. pp.41~47.
AOAC officical methods, 14th ed. 1984. Association of Official Analytical Chemists, Washington, D. C. U. S. A.
ASAE Recommendation 1995 :ASAE S386.3, Compression test of food materials of convex shape. Agricultural Engineers Yearbook :466-470.
Ashcroft, D. A. and W. L. Kjelgaard. 1972. Compression creep properties of reduced forage. Transactions of the ASAE. 609-612.
Bourne, M. C. 1979. Texture of temperate fruits. J. Texture Stud. 10:25-44.
Brady, C. J. 1987. Fruit ripening. Ann. Rev. Plant Physiol. 38: 155-178.
Campbell, A. D., M. Huysamer, H. U. Stotz, L. C. Greve, and J. M. Labavutvh. 1990. Comparison of ripening processes in intake tomato fruit and excised pericarp discs. Plant Physiol. 94:1582-1589.
Cannas, A. 1999. Tannins interaction with other macromolecules. URL:
http://www.ansci.cornell.edu./plants/toxicagents/tannin/interaction.html.
Chang, K., T., Wang. C., Wei, and Y. Huang, 1998. Tannins and human health:Ariview. Critical Reviews in Food Science and Nutrition. 38:421~464
Chappell. T W. and D. D. Hamann.1968. Poisson’s ratio and Young’s modulus for apple flesh under compression loading. Transactions of the ASAE 608-610.
Collins, R. J. and J. S. Tussled. 1995. The influence of storage time and
temperature on chilling injury in ‘Fuyu’ and ‘Surug’apersimmon (Diospyros
kaki L.) grown in subtropical Australia. Postharvest Biol. Technol. 6: 149-157.
Cutillas-Iturralde, A., I. Zarra, and E. P. Lorences. 1993 . Metabolism of cell wall polysaccharides from persimmon fruit. Pectin solubilization during fruit ripening occurs in apparent absence of polygalacturonase activity. Physiol. Plant. 89:369-375.
Delwiche, M. J. and R. A. Baumgardner. 1985. Ground color as a peach maturity Index. J. Amer. Soc. Hort. Sci. 110:53-57.
Dubois, M. 1956. Colormetic method for determination of sugar and related substance. Anal. Chem. 28:256-350.
Fischer, R. L. and A. B. Bennet. 1991 . Role of cell wall hydrolase in fruit
ripening. Ann. Rev. Plant Physiol. Plat Mol. Biol. 42:675-703.
Forbus J. R., W. R., J. A. Payne, and S. D. Senter. 1991. Nondestructive evaluation of Japanese persimmon maturity by delayed light emission. J. Food Sci. 56:985-988.
Fukushima, T., H., Murayama, and K. Yao, 1992. A few factors related to insolubilization of tannin in a ‘kakisibu’ solution. Journal of Yamagata Agricultural and Forestry Society. 49: 13-17.
Grant, T. M., E. A. MacRae, and R. J. Redgwell. 1992. Effect of chilling injury on physicochemical properties of persimmon cell walls. Phytochemistry 3l : 3739-3744.
Haslam, E. 1974. Polyphenol-protein interactioms. The Biochemical Journal: Molecular Aspects. 139: 285-288.
Ishii, Y., and T. Yamanishi, 1982. The changes of souble tannin and free sugars of astringent persimmon in process of sun drying. Nippon Shokuhin Kogyo Gakkaishi. 29:720-723.
Itamura, H. 1986. Relationships between furit softening, respiration and ethylene
production after deastringent treatment by alcohol in Japanese persimmon (Diospyros kaki Thunb. Var. Hiratanenashi) fruit harvested at various stages. J. Japan Soc. Hort. Sci. 55:89-98.
Itamura, H., T. Tanigawa, and H. Yamamura. l995. Composition of cell-wall
polysaccharides during fruit softening in ''Tonewase'' Japanese persimmon. Acta Hort. 398: 13l-138.
Itamura, H., Y. Ohno, and H. Yamamura. l997. Characteristics of fruit softening in Japanese persimmon ''Saijo''. Acta Hort. 436:179-188.
Ito, S. 1971. The persimmon. pp. 281-302. In: A. C.Hulme (ed.) .The Biochemistry
of Fruit Set and Their Product. Vol. 2. Academic. Press. New York and London.
Ittah, Y. 1993. Sugar content change in persimmon fruits (Diospyros kaki L.) during artoficial ripening with CO2: a possible connection to de-astringency mechanisms. Food Chem. 48:25-29.
Jone, W. T., R. B., Broadhurst and J. W. Lyttleton 1976. The condensed tannins of pasture legume species. Phytochemistry. 15: 1407-1409.
Kato, K. 1987. Astringency removal and ripening as related to temperature during the de-astringency by ethanol in persimmon fruits. J. Japan Soc. Hort. Sci. 55:498-509.
Liang, M., L. H. Chen, and C. P. Hegwood. 1990. Physical and mechanical properties of muscadine garpes related to maturity, mechanical harvesting, and processing. ASAE Paper NO. 90-6548. St.Joseph, MI49085.
Lyons, J.1973. Chilling injury in plants. Ann. Rev. Plant Physiol. 24:445-466.
Lyon, B. G. S. D. Senter, and J.A. Payne. 1992. Quality characteristics of orienta1 persimmons (Diospyros kaki L. cv. Fuyu) grown in the southeastern United States. J. Food Sci. 57:693-695.
Macheix, J., A., Fluriet, and J. Billot, 1990. The main phenolics of fruits.Fruit phenolics, CRC Press, Inc. Florida. pp.4.
Matsuo, T. and S. Itoo, 1982. A model experiment for de-astringency of persimmon fruit with high carbon dioxide treatment: in vitro gelation of kaki-tannin by reacting with acetaldehyde. Agricultural and Biological Chemistry. 46: 683-689.
Mohsenin, N. 1986. Physical properties of plant and animal materials. Second
Revised and Updated Edition. New York:Gordon and Breach, Science Publishers. Inc.
Oh, H., J.E., Hoff, G. S., Armstrong, and L.A., Haff, 1980. Hydrophobic interaction in tannin-protein complexes. Journal of Agricultural and Food Chemistry. 28:394-398.
Redgwell, R. J., E. MacRae, I. Hallett, M. Fischer, J, Perry, and R. Harker. 1997. In vivo and vitro swelling of cell walls during fruit ripening. Planta 203: 162-173.
Roux, D. G. 1972. Recent advances in the chemistry and chemical utilization of the conndened tannins. Phytochemistry. 11: 1219-1228.
Seong, J. H. 1986. The nature removal of astringency in sweet persimmon
fruit and the distrbution of tannin substance in leaf and fruit. M. Se. Thesis.
Kyungpook National University, Department of Agricultural Chemistry,
Graduate School.
Sohn, T. H., and J. H., Seong, 1981. Studies on the nonastringency and
production of tannin in persimmon fruits. Korean Journal of food Science and
Technology. 13:261-265.
Taira, S. l996. Astringency in persimmon. pp.97-110. In: Linskens, H. F. and
F.Jackson (ed) Plant Analysis. Springer-Verlag Berlin Heidelberg, Inc,Germany.
Taira, S. and M. Ono. 1997. Reduction of astringency in persimmon caused by adhesion of tannins to cell wall fragments. Acta Hort. 436:235-238.
Taira, S., M. Ono, and N. Matsumoto. 1997. Reduction of persimmon astringency by complex fomlation between pectin and tannins. Postharvest Biol. Technol. 12:265-27l.
Taira, S., M. Ono, and M. Otsuki. 1998. Effects of beezing rate on astringency reduction in persimmon during and after thawing.Postharvest Biol. Technol. 14:317-324.
Taira, S., N., Matsumoto, and M. Ono, 1999. Differences insolubilities of tannins after six treatments for removal of astringency in persimmon fruit. Japanese Society for Horticultural Scienfce. Journal. 68:83-88.
Thorne, S. and J. S. Segurajauregui Alvarez. 1982. The effect of irregular storage temperatures on firmness and surface color in tomatoes. J. Sci. Food Agric. 33:671-676.
Tucker, G. A. 1993. In: Seymour, G. B., J. E. Taylor, and G. A. Tucker (eds.) Biochemistry of fruit ripening. Chapman & Hall. London. Introduction.pp.1-51.
Turker ,R.,V. Seniz, N. Ozdemir, and M. A., Suzen. 1994. Changes in the
chlorophyll carotenoid and lycopene contents of tomatoes in relation
to temperature. Acta Hort. 368:856-862.
Wan, Y., F. H. Buelow, and S. Gunasekaran. 1991. Engineering definition of firmness. ASAE Paper No.91-6507. St. Joseph, MI49085.
Wang. J. K. and H. S. Chang. 1970. Mechanical properties of papaya and their dependnce on maturity. Transactions of the ASAE 13:369-371.
Yasuko, I. and Y. Tei, 1982. The changes of soluble tannin and free sugars of
astringent persimmon in the process of sun drying. Nippon Shokuhin Kogyo
Gakkaishi Vol.29,NO12, 720~723.
Yonemori, K., and J. Matsushima 1985. Property of development of the tannin
cells in non-astringent type fruit of Japanese persimmon (Diospyros kaki) and
its relationship to natural deastringency. Japanese Society for Horticultural
Science. Journal. 54:201-208.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top