跳到主要內容

臺灣博碩士論文加值系統

(44.223.39.67) 您好!臺灣時間:2024/05/22 15:52
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:張欽南
研究生(外文):Chin-Nan Chang
論文名稱:光纖劣化機理評估-環境因素之影響
論文名稱(外文):Effect of Environments on the Degradation of Optical Fibers
指導教授:陳承斌陳承斌引用關係
指導教授(外文):Chern-Ping Chen
學位類別:碩士
校院名稱:國立東華大學
系所名稱:材料科學與工程學系
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2003
畢業學年度:91
語文別:中文
論文頁數:171
中文關鍵詞:環境因素光纖劣化光損SEMAFM
外文關鍵詞:optical fiberenvironmentdegradationSEMAFM
相關次數:
  • 被引用被引用:0
  • 點閱點閱:293
  • 評分評分:
  • 下載下載:17
  • 收藏至我的研究室書目清單書目收藏:0


多模光纖(multi-mode optical fibers)在不同環境下研究其劣化情形。劣化情形的評估,則是以光損計(optical loss tester)測試雷射光在承受不同環境變化之光纖中,其傳遞功率受彎曲度之影響;以兩點彎曲(two-point bending)及拉伸(uniaxial tensile)試驗測試光纖破壞強度,而且以SEM及AFM進行破壞面分析。
光纖承受不同環境劣化後,光纖彎曲度分別彎曲到8 mm(彎曲應力1.39 GPa) 至 13 mm(彎曲應力0.85 GPa) 之間時,光損計(optical loss tester)測得光傳遞功率會開始衰減,直到光纖斷裂。
光纖在室溫空氣中靜置後,經拉伸及兩點彎曲試驗,其強度值與在空氣中不同溫度下測試所得者,差異不大,其拉伸及兩點彎曲強度分別為4.65 GPa及4.91 GPa;但在有水的環境下,溫度越高,光纖強度衰減得越明顯,而且,靜置的時間越長,光纖之強度劣化越大。
光纖之破壞面SEM觀察結果,發現:含保護層者,在大氣中測試,可以由破裂紋(fracture marks)方向,追溯至其破壞起源缺陷,並未看見破壞鏡面(fracture mirror)。然而,當光纖之保護層剝除後,破壞面上即可明顯的看見破壞鏡面。在室溫、大氣中,拉伸及兩點彎曲測試之無保護層光纖破壞鏡面區半徑,分別為7.19 ± 2.93 μm與6.44 ± 3.2 μm。在水環境中時間越長,其破壞鏡面區半徑亦會增加,並且溫度增高也會增大。破壞鏡面區之形成,顯然是光纖因水分子劣化產生次極限裂縫成長 (subcritical crack growth) 之結果。
經由原子力顯微鏡 (AFM) 分析,破裂斷面的鏡相區 (mirror region) 之表面粗糙度為0.481 nm,霧區 (mist region) 之表面粗糙度為1.785 nm,破壞面之表面粗糙度顯然受到裂縫成長速度之影響。



The effects of environments on the degradation of multi-mode optical fiber, as-received and coating-stripped, were investigated. The optical power in the optical fiber as function of bend radii were evaluated by an optical loss tester. The strengths of fiber specimens exposed to various environments were determined by two-point bending and uni-axial tensile tests. The fracture surfaces of tested specimens were analyzed by SEM and AFM.
The optical power in the optical fiber specimens, which were exposed to various environments, were found to be decadent at bend radius, ranging from 8 mm (bending stress 1.39 GPa) to 13 mm (0.85 GPa), until sample fractured.
The strength of optical fibers, exposed to ambient air at several temperatures (up to 100℃) and subjected to either two-point bending or tensile tests, do not show appreciable variation. The bending and tensile strengths of optical fibers in ambient air were measured to be 4.65 GPa and 4.91 GPa, respectively. However, the strength of optical fiber, exposed to water, was found to decrease with increasing temperature.
SEM evaluation of fracture surface indicates that a fracture mirror region can not be found on the fracture surface of an as-received (with polymer coating) optical fiber in ambient air. From the fracture hackle marks, a fracture initial flaw can be found. However, a distinct fracture mirror region on the fracture surface of a coating-stripped fiber under various environments can be seen. The mirror radii of stripped fibers, in ambient air, subjected to bending and tensile tests were measured to be 6.44 (± 3.2) µm and 7.19 (± 2.9) µm, respectively. The mirror radius of this fiber was found to increase with increasing exposure time and temperature of water environment. The existence of fracture mirror region suggests the environmental assisted subcritical crack growth in glass fiber.
AFM analyses were performed on the fracture surface of an optical fiber specimen. The roughness of the fracture mirror region is averaged to be 0.481 nm, while the mist region is 1.785 nm. The roughness of fracture surface appears to be correlated with the rate of crack propagation.



摘要………………………………………………………………………I
ABSTRACT………………………………………………………………III
目錄………………………………………………………………………V
圖索引…………………………………………………………………VIII
表索引…………………………………………………………………XXV
第一章 緒論………………………………………………………………1
1.1 光纖介紹…………………………………………………………1
1.2 傳輸原理…………………………………………………………4
1.3 損耗特性…………………………………………………………5
1.4 破壞科學理論……………………………………………………9
1.5 偉佈分析方法………………………………………………….14
1.6 光纖缺陷尖端反應…………………………………………….16
第二章 研究目的………………………………………………………19
第三章 實驗方法………………………………………………………20
3.1 試樣…………………………………………………………….20
3.2 試驗方法………………………………………………………...21
3.2.1 光學試驗…………………………………………………..21
3.2.2 兩點彎曲試驗……………………………………………..22
3.2.3 拉伸試驗…………………………………………………..25
3.3 環境影響………………………………………………………...26
3.3.1 大氣中溫度及濕度……………………………………………26
3.3.2 水及溫度………………………………………………………26
3.4 掃描式電子顯微鏡(SEM)之觀察…………………………………27
3.5 原子力顯微鏡(AFM)觀察…………………………………………28
3.6 光損計分析…………………………………………………………29
第四章 實驗結果………………………………………………………30
4.1 大氣環境之拉伸強度…………………..………………….…30
4.2 大氣環境之兩點彎曲強度………………………………….…46
4.3 水環境之拉伸強度………………………..…………………62
4.4 水環境之兩點彎曲強度……………………………………….88
4.5 光學試驗………………………………………………………114
4.6 掃描式電子顯微鏡(SEM)觀察…………………………..……123
4.6.1 大氣環境之拉伸破斷……………………………………123
4.6.2 大氣環境之兩點彎曲破斷………………………………127
4.6.3 水環境之拉伸破斷………………………………………131
4.6.4 水環境之兩點彎曲破斷…………………………………138
4.7 原子力顯微鏡(AFM)觀察……………………………………..144
第五章 討論…………………………………………………………..147
5.1 環境劣化對機械強度之影響………………………………….147
5.2 掃瞄式電子顯微鏡(SEM)破壞面分析………………………..161
5.3 光纖在承受不同環境劣化之光功率受彎曲應力之影響…….165
5.4 原子力顯微鏡(AFM)分析………………………………….165
第六章 結論…………………………………………………………..166
第七章 未來工作……………………………………………………..168
參考資料………………………………………………………………169



參考資料
1.趙涵捷,“光纖之旅”,台灣書店,2000。
2.李銘淵,“光纖通信概論”,全華科技圖書公司,1997。
3.廖顯奎、陳奇峰、林奎輝編著,“光纖特性與通訊系統”,光電
半導體與光訊息顯示儲存技術人才培訓計畫講義,2001。
4.吳順正編著,“光纖特性與應用”,全華科技圖書公司,1993。
5.R. Allen Shotwell, An Introduction to Fiber Optics,
Prentice-Hall, Inc, 1997.
6.賴耿陽、蘇品書編撰,“通訊光纖應用技術”,復漢出版社,
1999。
7.張添喜,“光纖劣化機理之研究與二氧化矽包覆奈米碳球含金屬磁
性材料之研製”,2001。
8.John B. Wachtman, 1996, Mechanical Properties of
ceramics, pp263-269.
9.Gerd Keiser, Optical Fiber Communications, McGRAW-HILL
INTERNATIONAL EDITIONS, McGraw-Hill Book Co, 2000.
10.John Powers, An Introduction to Fiber Optic Systems,
McGRAW-HILL INTERNATIONAL EDITIONS, McGraw-Hill Book Co,
1999.
11.Joseph C. Palais, Fiber Optic Communications, Prentice-
Hall, Inc, 1998.
12.J. R. Lee and C. P. Chen, “Fracture Mirror of Optical
Fibers,” FSC 2002, paper, 2002.
13.吳曜東,光纖通訊系統原理與應用,全欣資訊圖書股份有限公司
14.C. P. Chen and T. H. Chang, “Fracture mechanics
evaluation of optical fibers,” Materials Chemistry and
Physics 9294, Vol. 77(1), pp110-116, 2002.
15.J. R. Lee and C. P. Chen, “Failure analysis of optical
fiber,” CMCS 2001, paper, 2001.
16.R.Morrell, “Standardized guidelines for fractography of
advanced ceramics — a view from Europe,” Fractography
of glasses and ceramics III, edited by J.R. Varner, V.D.
Fréchette, G.D. Quinn, pp71-89, 1995.
17.J.W. Johnson and D. G. Holloway, “On the shape and size
of the fracture zones on glass fracture surfaces,”
Phil. Mag., 14, pp731-743, 1966.
18.David J. Green, An introduction to the mechanical
properties of ceramics, Cambridge University Press, 1998.
19.Derek Hull, Fractography, Cambridge University Press,
1999.
20.J.J. Mecholsky, R. W. Rice and S. W. Freiman,
“Prediction of fracture energy and flaw size in glasses
from measurements of mirror size,” J. Am. Ceram. Soc.,
57(10), pp440-443, 1974.
21.C. P. Chen and M. H. Leipold, “The application of
fracture mechanics to failure analysis of photovoltaic
solar modules,” Proc. of 15th IEEE Photovoltaic
Specialists Conf., CH1644-4, pp1122-1125, 1981.
22.I. A. Abndel-Latif, R. C. Bradt and R. E. Tressler,
“Dynamics of fracture mirror boundary formation in
glass,” Int. Journ. of Fracture, 13( 3), pp349-359,
1977.
23.B. Lawn, Fracture of Brittle Solids—Second Edition,
Cambridge University Press, pp31-32, 1993.
24.J. J. Mecholsky, Jr., “Fractography, fracture mechanics
and fractal geometry: an integration,” Fractography of
glasses and ceramics III, edited by J.R. Varner, V.D.
Fréchette, G.D. Quinn, pp385-393, 1995.
25.B. Lin and M. J. Matthewson, “Inert strength of
subthreshold and post-threshold Vickers indentations on
fused silica optical fibers,” Phil. Mag. A, Vol. 74,
No.5, pp1235-1244, 1996.
26.C. R. Kurkjian, J. T. Krause and M. J. Matthewson,
“Strength and Fatigue of Silica Optical Fibers, ” J.
Lightwave Tech., IEEE, Vol. 7, No. 9, 1989.
27.M. J. Matthewson and C. R. Kurkjian, “Static Fatigue of
Optical Fibers in Bending,” J. Am. Ceram. Soc., Vol.
70, No.9, pp622-668, 1987.
28.G. S. Glaesemann and S. T. Gulati, “Design Methodology
for the Mechanical Reliability of Optical Fiber,”
Optical Engineering, Vol. 30, No. 6, pp709-715, June
1991.
29.V. A. Bogatyrjov, etc., “Mechanical Reliability of
Polymer coated and Heretically Coated Optical Fibers
Based on Proof Testing, ” Optical Engineering , Vol.
30, No. 6, pp690-699, June 1991.
30.J. E. Ritter, T. H. Service and K. Jakas, “Predicted
Static Fatigue Behavior of Specially Coated Optical
Glass Fibers,” J. Am. Cerram. Soc., Vol. 71, No. 11,
Nov. 1988.
31.D. R. Roberts, E. Guellar, L. M. Middleman, J. E. Ritter
and T. H. Service, “Design Requirements for Optical
Fiber in Bending,” SPIE, Vol.1174, Fiber optics
Reliability, pp316-324, 1989.
32.Ricardo E. Medrano and Peter E. Gillis, “Weibull
Statistics: Tenaile and Bending, ”
J.Am.Ceram.Soc.,Vol.70,No.10,C230-232, 1987.
33.W. Weibull, “The phenomenon of rupture in solids,”
Igeniors Vetenskaps Akademiens, Handlingar, 153, pp1-55,
1939.
34.W. Weibull, “A statistical distribution function of
wide applicability,” J. Appl. Mech., 18, pp293-297,
1951.
35.方金生,〝塑膠被覆光纖機械性質之研究〞,私立逢甲大學,材
料科學研究所碩士論文,1996.
36.Brian Lawn, “Fracture of Brittle Solids-Second
Edition,” Cambridge Solid State Science Series, p172-
174, 1993.
37.T. L. Anderson, “Fracture Mechanics, ” CRC Press,
Inc., 1991.
38.李建儒,「光纖之破壞分析研究」,東華大學材料科學與工程學
系,碩士論文,2002。
39.Prabhat K. Gupta, Daryl Inniss, Charles R. Kurkjian, and
Qian Zhong, “Nanoscale roughness of oxide glass
surface, ” Journal of Non-Crystalline Solids, p200-
p206, 2000.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top