跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.84) 您好!臺灣時間:2024/12/03 22:51
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:徐清彬
研究生(外文):Ching-Bin Shiu
論文名稱:二氧化鈦薄膜的性質和結構分析與其光觸媒行為
論文名稱(外文):Photocatalytic related properties and structure of titanium dioxide based films
指導教授:翁明壽
指導教授(外文):Ming-Show Wong
學位類別:碩士
校院名稱:國立東華大學
系所名稱:材料科學與工程學系
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2003
畢業學年度:91
語文別:中文
論文頁數:155
中文關鍵詞:氧化鈦氧化鎢氧化鉻光觸媒親水性電子束蒸鍍
外文關鍵詞:evaporationhydrophilicityphotocatalysischromium oxidetungsten oxidetitanium oxide
相關次數:
  • 被引用被引用:23
  • 點閱點閱:794
  • 評分評分:
  • 下載下載:105
  • 收藏至我的研究室書目清單書目收藏:3
本論文研究二氧化鈦及其相關材料薄膜之奈米結構、性質分析及其光觸媒行為。製程設備主要是以離子輔助式電子束蒸鍍系統(Ion Beam Assisted e-beam evaopration)來鍍膜,蒸鍍源使用99.9% rutile TiO2、99.99% triclinic WO3 和99.5% Cr2O3 ,合成TiOx、WOx與CrOx單層膜及TiOx/WOx與TiOx/CrOx多層膜,將這些薄膜分別沈積在Si (100)晶片、玻璃、石英玻璃等基材上。所使用的製程參數包括有:反應氣體的流量、基材溫度、蒸鍍速率及離子槍的功率等。
以XRD、Raman及XPS來分析薄膜結構與表面組成,以SEM及AFM觀察表面型態與粗糙度。用UV-Visible分光光譜儀分析薄膜在不同光波長下的吸收。在紫外光(365 nm)照射後,所引發的光觸媒性質測試包括有:利用水接觸角分析薄膜的親水性變化、亞甲基藍(methylene blue)的分解反應和銀離子(Ag+)的還原反應。
研究結果得知,氧化鈦薄膜,隨著不同的結晶相、不同的組成份及不同的膜厚,對紫外光照射下所引發的光觸媒性質有很明顯的影響。基材溫度在250℃,氧流量4 sccm,蒸鍍速率2 Å / sec下,可得到具有結晶相最好的銳鈦礦(anatase)之氧化鈦薄膜,其表面組成主要為TiO2,且含有最少量之未氧化完全的TiO2-x。在紫外光(365 nm)的照射下,其水接觸角變化能在10分鐘內,角度從37° 變化到約0°,表現最佳的親水性。除此之外,此薄膜具有最大的亞甲基藍分解反應速率與Ag+的還原反應速率。
TiOx光觸媒薄膜,膜厚需在大約0.6 μm以上,可展現出最佳的超親水性與光觸媒效果。即所需的臨界膜厚大約在0.6 μm左右,膜厚超過0.6 μm後,在紫外光下所引起之水接觸角的變化、分解亞甲基藍的效率都達到一最大值,而不再隨著膜厚的增加而有變化。
在多層膜方面,TiOx/WOx多層膜可吸收約450 nm 的可見光,在可見光(450 nm)照射下,30分鐘內,水接觸角從可30°變化到約0°,擁有極佳的親水性。而TiOx薄膜在可見光照射下,則無法產生親水性的表面,即水接觸角並無明顯的變化。TiOxCrOx多層膜雖可吸收約500 nm的可見光,但卻不具有任何光觸媒的性質。
The aim of the study focuses on the preparation, structure and photocatalytic behaviors of TiOx based and related materials. TiOx, WOx and CrOx films were prepared with ion beam assisted electron beam evaporation using 99.9% rutile TiO2, 99.99% triclinic WO3 and 99.5% Cr2O3 as a source material, respectively. The substrates include silicon wafer, glass and quartz . The processing parameters, including evaporation rate, substrate temperature, oxygen flow rate and ion bombardment, are modulated to obtain the best photocatalytic properties of the films. The relations among the processing parameter, structure and photocatalytic property are discussed in the study.
XRD, Raman and XPS were used to detect the film structure crystallinity and surface composition. SEM and AFM were used to observe the surface morphology and roughness. The photocatalytic related properties under UV and visible lights were characterized by the water-contact angle measurement, oxidation of methylene blue in aqueous solution, and reduction of Ag + to Ag in AgCl aqueous solution.
Variations in thickness, composition, crystallinity in the films made their photocatalytic properties different. It was found that the TiO2 films with well-crystallized anatase phase exhibited overall the best photocatalytic performance. The well-crystallized anatase TiO2 film , deposited with 4 sccm flow-rate and 2 Å / sec evaporation-rate at 250℃, exhibit the largest angle reduction from 37° to 2° within 10 mins, the best degradation rate of methylene blue and the best reduction rate of Ag+ to Ag under UV illumination. The critical thickness of the TiOx films to obtain the best superhydrophilic and photocatalytic properties is about 0.6μm. That is, the thickness over 0.6μm show similar superhydrophilic and photocatalytic properties.
The TiOx/WOx multilayer has the absorption edge at 450 nm in the UV-Vis spectrum, and shows an apparent UV-induced hydrophilicity, which is characterized by the water contact-angle variation from 37° to 0° within 30 mins. However, the TiOx/CrOx multilayer exhibit no photocatalytic properties, although its absorption edge appear at 500 nm.
誌謝……………………………………………………Ⅰ
中文摘要………………………………………………ⅡAbstract………………………………………………Ⅳ
目錄……………………………………………………Ⅵ
表目錄…………………………………………………Ⅸ
圖目錄…………………………………………………Ⅹ
一、前言………………………………………………1
1.1概述 ………………………………………………1
1.2研究動機 …………………………………………2
1.3研究目標 …………………………………………3
二、研究背景…………………………………………5
2.1 光觸媒性質及文獻回顧…………………………5
2.1.1 光觸媒之氧化還原原理………………………5
2.1.2 光觸媒文獻回顧………………………………7
2.2 蒸鍍 ……………………………………………10
2.2.1 蒸鍍原理 ……………………………………10
2.2.2電子束蒸鍍……………………………………11
2.3 薄膜沉積 ………………………………………12
2.4 薄膜特性與製程參數之關係 …………………15
2.4.1 基材 …………………………………………15
2.4.2 槍體總壓 ……………………………………16
2.4.3 蒸鍍源與基材間的角度 ……………………16
2.4.4 氣體流量 ……………………………………19
2.4.5 基材偏電壓 …………………………………19
2.4.6 基材溫度 ……………………………………20
2.4.7 離子輔鍍 ……………………………………20
2.4.7.1. 離子束之能量……………………………24
2.4.7.2 離子束之電流密度 ………………………24
2.4.7.3 IAD蒸鍍流程………………………………24
三、實驗方法 ………………………………………26
3.1 實驗規劃 ………………………………………26
3.1.1 TiOx單層膜 …………………………………27
3.1.2 WOx與CrOx單層膜……………………………27
3.1.3 TiOx/ WOx( or CrOx)多層膜………………27
3.2 蒸鍍實驗 ………………………………………28
3.2.1實驗系統介紹…………………………………28
3.2.2材料準備………………………………………29
3.2.3實驗製程………………………………………32
3.3分析方法…………………………………………33
3.3.1 XRD分析………………………………………33
3.3.2 FESEM及EDS 分析……………………………34
3.3.3 UV-Visible 分析……………………………35
3.3.4 接觸角分析 …………………………………36
3.3.5 Raman 光譜儀 ………………………………38
3.3.6 原子力顯微鏡(AFM)…………………………39
3.3.7 表面粗度儀 …………………………………40
3.3.8 X射線光電子能譜儀(XPS) …………………40
3.3.9 光觸媒薄膜分解亞甲基藍的實驗 …………41
四、結果與討論 ……………………………………45
4.1 TiOx單層膜 ……………………………………45
4.1.1蒸鍍速率之影響………………………………45
4.1.2 基材溫度的影響 ……………………………53
4.1.3 O2流量的影響 ………………………………63
4.1.4 離子輔鍍對TiOx單層膜的效應 ……………83
4.2 WOx單層膜 ……………………………………104
4.2.1 WOx單層膜在基材溫度250℃下的流量效…104
4.3 CrOx單層膜……………………………………115
4.3.1 CrOx單層膜在基材溫度250℃下的氧流量效
應……………………………………………115
4.4 TiOx/ WOx多層膜 ……………………………120
4.5 TiOx-CrOx多層膜 ……………………………136
4.6 綜合討論………………………………………139
五、結論……………………………………………146
5.1 結論……………………………………………146
5.2 未來工作………………………………………149
六、參考資料………………………………………150
1. A. Fujishima, T. N. Rao, and D. A. Tryk, J. Phochem. Potobiol. C:Photochem review 1 (2000) 1-21.
2. K-I. Suzuki, Purification and Treatment of Water and Air (1993)
421-434.
3. M. Bekholet, Wat. Sci. Tech. 35:11-12 (1997) 95-100.
4. K. Sunda, Y. Kikuchi, K. Hashimoto, and A. Fujishima, Enviromental Science and Technology 32:5 (1998) 726-728.
5. M. Schiavello, Heterogeneous Photocatalysis (1997).
6. H. Sakai, R-X. Cai, R. Baba, K. Hashimoto, Y. Kubota, and A. Fujishima, Purification and Treatment of Water and Air (1993) 651-657.
7. M. R. Hoffmann, S. T. Martin, W. Choi, and D. W. Bahnemann, Chem. Rev. 20 (1995) 69-95.
8. N. Z. Muradov, A. T-Raissi, D.Muzzey, C. R. Painter, and M. R. Kemme, Solar Energy 56 (5) (1996) 445-453.
9. E. T.C. Vogt, A. Boot, A. J. Vandillen, J. W. Geus, and F. M. G. Vanderkerkhof, J. Catal. 114 (1988) 313.
10. A. Heller, Acc. Chem. Res. 14 (1981) 154-162.
11. R. W. Mattews, J. Phys. Chem. 91 (1987) 3328-3333.
12. M. A. Fox, and M.Y. Dulay, Chem. Rev. 93(1) (1993) 341-357.
13. J. Willetts, L. C. Chen, J. F. Graefe, and R.W. Wood, Life Sciences
150
Including Pharmacology Letters 57 (15) (1995) 225-230.
14. A. Fernandez, G. Lassaletta, V. M. Jimenez, A. Justo, A. R. Gonzalez-Elipe, J-M. Herrmann, H, Tahri, and Y. Ait-Ichou, Applied Catalysis B: Environmental 7 (1995) 49-63.
15. Merta I. Litter, Applied Catalysis B: Environmental 23 (1999) 89-114.
16. T. Sumita, H. Otsuka, H. Kubota, M. Nagata, Y. Honda, and R. Miyagawa, Nuclear Instruments and Methods in Physics Research B 148 (1999) 758-761
17. D. Dumitriu, A.R. Bally, C. Ballif, P. Hones, P. E Schmid, R. Sanjinés, and F. Lévy, Applied Catalysis B: Environmental 25 2-3 (2000) 83-92.
18. Y. R. Do, W. Lee, K, Dwight, and A. Word, Journal of Solid State Chemistry 108,198-201 (1994)
19. Young Tae Kwon, Kang Yong Song, Wan In Lee, Guang Jin Choi and Young Rag Do, Journal of Catalysis 191, 192-199(2000)
20. X. Z. Li, F. B. Li, C.L. Yang, W.K. Ge, Journal of Photochemistry and Photobiology A: Chemistry 141 (2001) 209-217.
21. Kang Yong Song, Myun Kyu Park, Young Tae Kwon, Hyum Woo Lee, Chem. Mater. 2001, 13,2349-2355.
22. Masahiro Miyauchi, Akira Nakajima, Toshiya Watanabe, and Kazuhito Hashimato, Chem. Mater. 2002, 14, 4714-4720.
23. 莊達人, VLSI製造技術(1998).
151
24. S. Gimeno, J. C. Munoz, and A. Lousa, Thin Solid Films 317 (1998) 376-379.
25. 蕭國益, AlN/TiN及AlN/ZrN超晶格之合成與特性分析(1999).
26. S. K. Habib, Vacuum 49(2) (1998) 153-160.
27. Y. Y. Wang, M.S. Wong, W.J. Chia, J. Rechner, and W. D. Sproul, J. Vac. Sci. Technol. A 16 (6) (1998) 3341-3347.
28. A. Temescal, Physical Vapor Deposition, (1976).
29. M. Ohring, The Materials Science of Thin Films (1991).
30. K. J. A. Mawella, and J. A. Sheward, Thin Solid Films 193/194 (1990) 27-33.
31. J. A. Thornton, Thin Solid Films 171 (1989) 5-31.
32. K. H. Muller, J. Appl. Phys. 58 (1985) 7.
33. J. Musil, and J.Vicek, Materials Chemistry and Physics 54 (1998)
116-122.
34. P. J. Kelly, and R. D. Arnell, Vacuum 49 (1998) 43-47.
35. Guide to operations gor the 2cm ion source, Veeco/Commonwealth Sciectific
36. J. M. Schneider, M. Bigerelle, and A. Iost, Materials Science and
Engineering A 262 (1999) 256.
152
37. 汪建民, 材料分析(1998).
38. 日本協合公司, http://www.face-kyowa.co.jp/index.htm
39. Milton Ohring, The Materials Science of Thin Films,Academic Press, 1992.
40. S. Kelly, F.H. Pollak, M. Tomkiewicz, J. Phys. Chem. B101 (1997) 2730.
41. Y. Ma, J.B. Qiu, Y.A. Cao, Z.S. Guan, J. N. Yao, Chemosphere 44 (2001) 1087.
42. Simon, C. Perrin, J. Bardolle, J. Microsc. Electron. 1 (1976) 175.
43. Nefedov, Y.V. Salyn, A.A. Chertkov, L.N. Padurets, Zh. Neorg. Khim. 19 (1974) 1443.
44. H.K. Jang, S.W. Whangbo, H.B. Kim, K.Y. Im, Y.S. Lee, I.W. Lyo, C.N. Whang, G. Kim, H.S. Lee, J.M. Lee, J. Vac. Sci. Technol. A18 (2000) 917.
45. C.N. Sayers, N.R. Armstrong, Surf. Sci. 77 (1978) 301.
46. J.F. Moulder, W.F. Stickle, P.E. Sobal, K.D. Bomben, Handbook of X-ray photoelectron Spectroscopy (Perkin-Elmer, Eden Prairie MN, 1992).
47. L. Holland, Vacuum Deposition of Thin Films, Wiley, New York, 1961, p.464.
48. S. Dushman, Scientific Foundation of Vacuum Technique (Wiley, New York, 1962) p.760.
49. R.C. DeVries, R. Roy, Am. Ceram. Soc. Bull. 33 (1954) 370.
50. L.M. Williams, D.W. Hess, J. Vac. Sci. Technol. A1 (1983) 1801.
153
51. F. Zhang, Z. Zheng, X. Ding, Y. Mao, Y. Chen, Z. Zhou, S. Yang, X. Liu, J. Vac. Sci. Technol. A15 (1997) 1824.
52. F. Zhang, X. Wang, C. Li, H. Wang, L. Chen, X. Liu, Surf. Coat. Techn. 110 (1998) 136.
53. R. Wang, K. Hashimoto, A. Fujishima, M. Chikuni, E. Kojima, A. Kitamura, M. Shimohigoshi, T. Watanabe, Nature 388 (1997) 431.
54. R. Wang, N. Sakai, A. Fujishima, T. Watanabe, K. Hashimoto, J. Phys. Chem. B103 (1999) 2188.
55. P. Zeman, and S. Takabayashi, J. Vac. Sci. Technol. A 20 (2) (2002) 388-393.
56. S. S. Perry, J. W. Ager, G. A. Somorjai, R. J. McClelland, and M. D. Drory, J. Appl. Phys. 74 (12) (1993) 7542-7550
57. C. M. Foster, R. P. Chiarello, H. L. M. Chang, H. You, T. J. Zhand, H. Frase, J. C. Parker, and D. J. Lam, J. Appl. Phys. 73 (6) (1993) 2841-2847
58. L. S. Hsu, R. Rujkorakarm, J. R. Sites, and C.Y. She J. Appl. Phys. 59 (10) (1986) 3475-3480
59. Gratian R. Bamwenda, Takashi Uesigi, Yoshimoto Abe, Kazuhiro Sayama, Hiromori Arakawa, Aplied Catalysis A: General 205 (2001)117-128.
60. B. Pecquenard, H.Lecacheux, J. Livage and C. Julien, “Orthorhombic WO3 Formed via Ti-Stabilized WO3 1/3H2O Phase”, J. Solid State Chemistry, 135 (1998) 159-168.
154
61. J.E. Maslar, W.S. Hurst, W.J. Bowers Jr., J.H. Hendricks, M.I. Aquino, I. Levin, Applied Surface Science 180 (2001) 102-118.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊