跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.90) 您好!臺灣時間:2024/12/11 23:55
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:吳合崧
研究生(外文):Her-Song Wu
論文名稱:藍芽與IEEE802.11互連網路之智慧型切換系統設計
論文名稱(外文):BLUETOOTH AND IEEE 802.11 COEXISTENCE SERVICE ARCHITECTURE WITH FUZZY-BASED SWITCHING SCHEME
指導教授:陳俊良陳俊良引用關係
指導教授(外文):Jiann-Liang Chen
學位類別:碩士
校院名稱:國立東華大學
系所名稱:資訊工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2003
畢業學年度:91
語文別:英文
論文頁數:79
中文關鍵詞:無線區域網路無線個人區域網路模糊理論模糊推論程序解模糊化模糊化換區
外文關鍵詞:BluetoothWPANCall Admission ControlService InterworkingMulti-System Resource AllocationFuzzy MatricesWireless LAN
相關次數:
  • 被引用被引用:0
  • 點閱點閱:189
  • 評分評分:
  • 下載下載:15
  • 收藏至我的研究室書目清單書目收藏:1


近幾年來無線通訊已經成為許多研究及產品發展的焦點,而其能夠不受空間限制的存取網路資源是最重要的觀念。對於無線網路的Call Admission Control,三個重要的考量點就是 — 有效率的使用有限的無線資源、低功率消耗需求和服務品質的提升。
基於上述的考量,本研究針對IEEE 802.11無線區域網路及藍芽的無線個人區域網路提出一套以模糊理論為基礎,用於此共存環境的智慧型切換系統 - FMSS。在使用者資源要求及換區(handoff)服務要求方面,我們根據使用者的的移動速度及頻寬需求,來將資源做有效的配置,並經由模糊化、解模糊化和模糊推論程序來執行切換判斷的方案。另外,在無線環境最大困難點要克服的就是頻率干擾的問題,我們也針對此共存環境的頻道干擾問題作分析,並根據IEEE 802.15.2此工作群所採用的解決方案來設計出共存干擾解決機制。
我們的模擬首先針對智慧型切換系統的Blocking Probability及System Utilization來做效能分析的量測,結果也顯示了縱使在經歷了嚴重的頻率干擾下,FMSS仍然優於同質性網路。而且當網路負載增加,我們的系統和同質性網路比較的差距值也拉大。當系統每秒達到二十個及三十個使用者來要求網路服務時,FMSS在Blocking Probability方面比無線區域網路分別低20.57%及11.74%。而在System Utilization方面也比同質性網路高3.51%及5.87%。
此外,我們也針對Queue Length、Loss Rate及End-to-End Delay來評估互連網路的效能。在Queue Length的分析中,閘道器的佇列中的封包數與每秒流進閘道器的封包數成正比。而在Loss Rate的分析中,Loss Rate會隨著閘道器佇列大小的增加而減少。相對著,閘道器佇列大小的增加則會造成End-to-End Delay的增加。



In the modern world of wireless communications, the concept of wireless global coverage is of the utmost importance. Three key considerations of call admission control in wireless networks are efficient use of scarce resource, the lower power consumption, and quality-of-service improvement. Based on the aforesaid considerations a two-tier service architecture with fuzzy-based switching scheme was proposed in an IEEE 802.11 (WLAN) and bluetooth (WPAN) coexistence service environment. In the environment combinational channels are allocated to new or handoff services according to some acceptance criterion and service facility such as the motion speed, and traffic characteristics. Through the fuzzification, defuzzification, and inference procedures, a switching decision-making scheme was performed.
Simulation results were shown that the measured performance in terms of service blocking probability and system utilization from the fuzzy-based two-tier model, which experiences a severe radio mutual interference had better than that of homogeneous networks. In heavy traffic load, the differences of blocking probability between FMSS and WLAN increase. When new call rates are 20 new calls per second and 30 new calls per second, FMSS is 20.57% and 11.74% lower than WLAN, respectively. It is also better than homogeneous networks at 3.51% and 5.87% in system utilization.
Moreover, the service interworking performance in terms of queue length, traffic loss rate and end-to-end delay were also evaluated. In the queue length analysis, the gateway queue length is in the direct proportion with the size of the traffic flow. In the loss rate analysis, the loss rate decreases when the gateway queue length increasing. On the contrary, the end-to-end delay increases when the gateway queue length increasing.



Chapter 1 Introduction
Chapter 2 Background Knowledge
Chapter 3 Interference Analysis
Chapter 4 Proposed Fuzzy-Based Switching Scheme
Chapter 5 Performance Analysis
Chapter 6 Conclusion and Future Work



[1] I. Stojmenovic, Handbook of wireless networks and mobile computing, John Wiley & Sons, Inc., 2002.
[2] G. Ivano, D. Paolo, and F. Paolo, “The role of Internet technology in future mobile data systems,” IEEE Communications Magazine, Vol.38, No.11, pp.68-73, 2000.
[3] Y.B. Lin and I. Chlamtac, Wireless and mobile network architectures, Wiley, 2000.
[4] J.L.C. Wu, H.H. Liu, and Y.J. Lung, “An Adaptive Multirate IEEE 802.11 Wireless LAN,” Proceedings of 15th International Conference on Information Networking, pp.411-418, 2001.
[5] Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications: Higher Speed Physical Layer (PHY) Extension in the 2.4GHz band, IEEE Std 802.11b/D5.0, April 1999.
[6] P. Johansson, N. Johansson, and J. Elg, “Short range radio-based ad-hoc networking: performance and properties,” Proceedings of IEEE International Conference on Communications, pp.1414-1420, 1999.
[7] B.A. Miller and C. Bisdikian, Bluetooth revealed, Prentice Hall, 2000.
[8] D.G. Leeper, “A long-term view of short-range wireless,” IEEE Computer, Vol.34, No.6, pp.39-44, 2001.
[9] J.C. Haartsen and S. Mattisson, “Bluetooth- a new low-power radio interface providing short-range connectivity,” Proceedings of the IEEE, Vol.88, No.10, pp.1651-1661, 2000.
[10] A.P.P.S. Bilan, “Streaming audio over bluetooth ACL links,” Proceedings of ITCC 2003 International Conference on Information Technology: Computers and Communications, pp. 287-291, 2003
[11] M. C. Shin, S.T. Park, S. W. Lee, S. H. Kang and I. C. Park, “Area-efficient digital baseband module for Bluetooth wireless communications,” IEEE International Symposium on Circuits and Systems, 2002, Vol. 5, p.p 729-732, 2002
[12] R. Nusser and R.M. Pelz, “Bluetooth-based Wireless Connectivity in an Automotive Environment,” Proceedings of the IEEE VTC2000, pp.1935-1942, 2000.
[13] The Bluetooth Special Interest Group, Bluetooth Network Encapsulation Protocol Specification, 2001.
[14] “Profiles of the Bluetooth System”, V1.1, December 2000. (http://www.Bluetooth.com)
[15] I. Howit, “IEEE 802.11 and Bluetooth Coexistence Analysis Methodology,” Proceedings of the IEEE Conference, pp.1114-1118, 2001.
[16] J. Zyren, “Extension of bluetooth and 802.11 direct sequence interference model,” IEEE 802.11-98/378, 1998.
[17] Brent Miller, The phony conflict- IEEE 802.11 and bluetooth wireless technology, (www-106.ibm.com/developeworks/wireless/library)
[18] C. F. Chiasserini and R.R. Rao, “Coexistence mechanisms for interference mitigation between IEEE 802.11 WLANs and Bluetooth,” Proceedings of the IEEE INFOCOM, New York, NY, USA, June 2002.
[19] E. Lawrence, G. Culjak and S. Injam, “Bluetooth in the m-Enterprise: true blue believers?,” Proceedings of ITCC 2003 International Conference on Information Technology: Computers and Communications, pp. 281—286, 2003
[20] J. Bray and C. F. Sturman, Bluetooth: Connect Without Cables, 2nd Edition, Prentice Hall PTR, 2002.
[21] Wireless Comparison Information (www.netgear.com)
[22] O. Tickoo and B. Sikdar, “On the impact of IEEE 802.11 MAC on traffic characteristics,” IEEE Journal on Selected Areas in Communications, Vol.21, No.2, pp. 189-203, Feb 2003
[23] IEEE 802.15 Working Group for Wireless Personal Area Networks (WPANs) site http://www.ieee802.org/15/
[24] The Bluetooth Special Interest Group, Personal Area Networking Profile, 2001.
[25] E. Ekici and C. Ersoy, “Multi-tier cellular network dimensioning,” Wireless Networks, 7, pp.401-411, 2001.
[26] Y.H. Wang, C.H. Tsai and H.M. Huang, “Mobility management of IP-based multi-tier network supporting mobile multimedia communication services,” Proceedings of the 22nd International Conference on Distributed Computing Systems Workshop, pp.347-352, July 2002.
[27] A. S. Anpalagan and I. Katzela, “Overlaid cellular system design with cell selection criteria for mobile wireless users,” Proceedings of the IEEE Canadian Conference on Electrical and Computer Engineering, Vol.1, pp.24-28, 1999.
[28] A. Ephremides, T. Itoh, R. Pickholtz, M. Iskander, L. Katehi, R. Rao, W. Stark, and J. Winters, Wireless technologies and information networks, International Technology Research Institute, July 2000.
[29] H. Furukawa and Y. Akaiwa, “Performance of integrated macro and microcell systems applied to TDMA or CDMA cellular systems,” Proceedings of the 1995 Fourth IEEE International Conference on Universal Personal Communications, pp.615-619, 1995
[30] T.B. Zahariadis, K.G. Vaxevanakis, C.P. Tsantilas, N.A. Zervos, and N.A. Nikolaou, “Global Roaming in Next-Generation Networks,” IEEE Communications Magazine, Vol.40, No.2, 2002
[31] B. Treister, H.B. Gan, K.C. Chen, H.K. Chen, A. Batra, and O. Eliezer, “Adaptive frequency hopping: A non-collaborative coexistence mechanism,” document: IEEE 802.15-01/252r0, May 2001.
[32] B. Treister, K.C. Chen and A. Batra, ”Adaptive frequency hopping clause 14.3,” IEEE P802.15-TG2_366r1, July 2001.
[33] O. Eliezer, “Non-collaborative mechanisms for the enhancement of coexistence performance,” document: IEEE 802.15-01/092r1, January 2001.
[34] M.B. Shoemake, “Wi-Fi(IEEE 802.11b) and Bluetooth Coexistence Issues and Solutions for the 2.4 GHz ISM Band- Version 1.0,” White Paper, Feb. 2001.
[35] B. Treister, K.C. Chen and A. Batra, ”Adaptive Frequency Hopping Clause 14.3,” document: IEEE P802.15-TG2_366r1, July 2001.
[36] D. K. Borah, R. Jana, A. Stamoulis, “Performance evaluation of IEEE 802.11a wireless LANs in the presence of ultra-wideband interference,” IEEE Wireless Communications and Networking 2003, Vol. 1, pp. 83-87, 2003
[37] H.C. Haartsen and S. Mattisson, “Bluetooth-a new low-power radio interface providing short-range connectivity,” Proceedings of the IEEE, Vol.88, pp.1651-1661, 2000.
[38] A. S. Anpalagan, I. Katzela, “Overlaid cellular system design with cell selection criteria for mobile wireless users,” Proceedings of the IEEE Canadian Conference on Electrical and Computer Engineering, Vol.1, pp.24-28, 1999.
[39] R.Berezdivin, R.Breinig and R.Topp, “Next-generation wireless communications concepts and technologies,” IEEE Communications Magazine, Vol.40, No.3, p.p.108-116, 2002
[40] G. Wu, P.J.M. Havinga and M. Mizuno, “Wireless Internet over heterogeneous wireless networks,” Proceedings of the IEEE Global Telecommunications Conference, Vol.3, p.p1759-1765, 2001
[41] L.A. Zadeh, “A prototype-centered approach to adding deduction capability to search engines-the concept of protoform,” Proceedings of the 2002 First International IEEE Symposium, Vol.1, pp.2-3, 2002.
[42] Jae Chung, Mark claypool, “NS by Example,” WPI, http://nile.wpi.edu/NS
[43] The Network simulator-ns-2 (http://www.isi.edu/nsnam/ns/)
[44] A. Sharma, K. Raghunath and K. Subramanian, “Bluehoc And Bluescat Frequently Asked Questions” (http://www-124.ibm.com/developerworks/opensource/bluehoc/)

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top