跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.87) 您好!臺灣時間:2024/12/04 17:31
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:許珮薰
研究生(外文):Pei-Hsun Hsu
論文名稱:Gadaline類神經網路的學習理論與函數近似應用
論文名稱(外文):Function Approximation Using Generalized Adalines
指導教授:吳建銘吳建銘引用關係
指導教授(外文):Jiann-Ming Wu
學位類別:碩士
校院名稱:國立東華大學
系所名稱:應用數學系
學門:數學及統計學門
學類:數學學類
論文種類:學術論文
論文出版年:2003
畢業學年度:91
語文別:英文
論文頁數:45
中文關鍵詞:adalineperceptron廣義adaline函數估計Gaussian陣列平均場退火理論最陡坡降法監督式學習法則
外文關鍵詞:adalineperceptrongeneralized adalinefunction approximationGaussian arraygradient descentsupervised learning processmean field annealing
相關次數:
  • 被引用被引用:0
  • 點閱點閱:507
  • 評分評分:
  • 下載下載:24
  • 收藏至我的研究室書目清單書目收藏:0


本篇論文主要探討以廣義 adaline網路為基礎的近似函數的學習法則。廣義adaline神經元包含一個接收場向量及一個多態激發函數,激發函數的輸入是多變量刺激在接收場向量上的投影特徵,輸出是嵌入式Gaussian陣列的標準化反應。我們將建構有效監督式學習法則的數學模型,具體目標包含強化投影特徵的有效性、提升Gaussian元件的利用率及降低訓練集的近似誤差。我們得到混合式的整數及線性規劃模型,並利用平均場退火理論及最陡坡降法求取該架構之最佳解。經過嚴密的推導,我們得到三個交互動態方程祖,具體實踐新的監督式學習法則。實驗的結果顯示,新的學習法則可以找到訓練集中隱含的內在生成對應函數。



This work explores the learning process of a network of generalized adalines for function approximation. A generalized adaline contains a receptive field and a multi-state activation function, of which the output is the normalized response of an embedded Gaussian array and the input is the feature extracted by the receptive field from a multi-component stimulus. The supervised learning process is modeled by a mathematical framework, addressing on subjects of extracting the most effective feature, maximizing utilization of Gaussian units, and fitting criteria proposed by training samples. The mathematical framework is a mixed integer and linear programming, and can be solved by a hybrid of the mean field annealing and the gradient descent methods. As a result, we have three sets of interactive dynamics for the new supervised learning process. Numerical simulations show that the learning process is able to generate essential internal representations for the mapping underlying training samples.



1.Neural Organization of Generalized Adalines
A. Adalines 1
B. Generalized Adalines 3
C. A Network of Generalized Adalines 6
2.A Mathematical Framework for Learning Neural Approximation 7
3.Neural Dynamics 12
4.Numerical Simulations and Discussions
A.The first strategy for simulating interactive dynamics 16
B.The second strategy for simulating interactive
dynamics 19
5.Conclusions 21
Appendix
References



(1) Bernard Widrow, Generalization and Information Storage in Networks of Adaline 'Neuron,' in Self-Organizing Systems 1962, M. Yovitz, G. Jacobi, and G. Goldstein, Eds. Washington, DC: Spartan Books, 1962, pp.435-461.
(2) Bernard Widrow, (1990). 30 Years of Adaptive Neural Networks: Perceptron, Madaline, and Backpropagation. Proceedings of the IEEE, Vol.78, No.9, September 1990.
(3) F. Rosenblatt, Principles of Neurodynamics: Perceptrons and the Theory of Brain Mechanisms. Washington, DC: Spartan Books, 1962.
(4) Werbos, P.J., Backpropagation: past and the future. Neural Networks, 1988., IEEE International Conference on 24-27 July 1988. Pages: 343-353 Vol.1.
(5) Jiann-Ming Wu, Natural Discriminant Analysis Using Interactive Potts Models. Neural Computation 14, 2002, page: 689-713.
(6) Peter Dayan and L.F. Abbott, Theoretical Neuroscience: Computational and Mathematical Modeling of Neural Systems. MIT Press. December 1, 2001, page: 105.
(7) Peterson, C., and Södergerbg, B., (1989). A new method for mapping optimization problems onto neural network, Int. J. Neural Syst. 1,3.
(8) RBF Net Implementation, Gunnar Rätsch, http://mlg.anu.edu.au/~raetsch/Software.html
(9) Hung-Tsai Chang, A New Learning Algorithm for Functional Approximation Using Potts Models, June 2001
(10) Jiann-Ming Wu and Shih-Jang Chiu, (2001). Independent Component Analysis Using Potts Models. IEEE transactions on Neural Network, Vol.12, No. 2, March 2001.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top