跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.81) 您好!臺灣時間:2024/12/02 20:57
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:許雅傑
研究生(外文):Ya-Chieh Hsu
論文名稱:多類別資料迴歸模型之適合度檢定統計量研究
論文名稱(外文):Goodness of Fit Statistics for Polytomous Regression Models
指導教授:趙維雄
指導教授(外文):Wei-Hsiung Chao
學位類別:碩士
校院名稱:國立東華大學
系所名稱:應用數學系
學門:數學及統計學門
學類:數學學類
論文種類:學術論文
論文出版年:2003
畢業學年度:91
語文別:英文
論文頁數:58
中文關鍵詞:順序型資料自然聯結函數多類別迴歸模型多類別資料適合度檢定皮爾森卡方
外文關鍵詞:categorical dataordinal dataPearson''s chi-squareGoodness of fit
相關次數:
  • 被引用被引用:2
  • 點閱點閱:371
  • 評分評分:
  • 下載下載:40
  • 收藏至我的研究室書目清單書目收藏:1
對於彼此獨立且具有相同多項式分配的類別資料,一般常使用具卡方分配的皮爾森統計量來進行適合度檢定。該統計量乃是由各類別觀測總數減去期望總數之差所構成的二次型。關於一般多類別迴歸模型的適合度檢定,文獻上已有一些藉由拓展皮爾森卡方檢定法所提出的統計量,包括統計量$Q$, Hosmer及Lemeshow的$hat{C}$,及Pigeon的$J^2$。我們將報告這些統計量的缺點,並提出一個利用更合適共變異矩陣所建造的二次型統計量$W$。根據模擬試驗,除了使用自然聯結函數的模型外,我們所提出的統計量$W$在虛無假設下近似於卡方分配,其自由度為反應變數類別數減去一。經由模擬研究,我們檢視以上這些統計量的表現,並與近來利用殘差所建造的$SD_1$統計量作比較。結果如同我們所臆測, $Q$和$J^2$不適於實際使用, $W$和$SD_1$有令人滿意的『型一錯誤』模擬值。此外,對於順序型資料,當聯結函數為累積probit函數時, $W$檢定出模型為錯誤的能力表現優於$SD_1$,尤其是樣本數小的時候。在名目型資料的自然聯結迴歸模型下, $SD_1$檢定出模型為錯誤的能力不穩定。
Goodness-of-fit tests for i.i.d. multinomials are usually based on Pearson''s $chi^2$ statistic, which is a quadractic form in the observed totals minus expected totals. For general polytomous regression models with independent multinomials, several
statistics extending Pearson''s $chi^2$ statistic have been proposed in the literature for goodness-of-fit assessment, including $Q$, Hosmer and Lemeshow''s $hat{C}$, Pegion''s $J^2$. We present the drawback of these approaches and propose a new quadratic form statistic $W$, which uses a more appropriate covariance matrix to form the quadratic form. We present a simulation study to show that for models without using the natural link the statistic $W$ has an approximate $chi_{k-1}^2$ distribution under the null hypothesis, where $k$ denotes the number of categories of the response variable. We compare by simulation the performance, in terms of both size and power, of these statistics to the recent residual based Pearson''s $SD_1$, a member in the family of power-divergence statistics $SD_{lambda}$. These simulations confirm our conjecture that $Q$ and $J^2$ are not appropriate for practical use and demonstrate that both $W$ and $SD_1$ have satisfactory size performance. In addition, it was found that for ordinal data the power performance of the simulated $W$ is better than that of $SD_1$ in the cumulative probit regression model, especially when the sample size is small, and that for nominal data the power performance of the simulated $SD_1$ is not stable in the multinomial logit regression model.
Introduction (1)
Regression Models for Categorical Data (4)
Existing Omnibus Goodness-of-Fit Statistics (15)
The Proposed Goodness of Fit Statistic (22)
Simulation Studies (32)
Concluding Remarks (52)
References (54)
1 Ash, R. B. and Dole''ans-Dade, C. A. (2000).
Probability and Measure Theory. 2nd ed.
Academic Press: New York.
2 Barnhart, H. X. and Williamson, J. M (1998).
Goodness-of-fit fest for GEE modeling with binary responses.
Biometrics 54, 720-729.
3 Cressie, N. A. C. and Read, T. R. C. (1984).
Multinomial goodness-of-fit tests.
Journal of the Royal Statistical Society, Ser. B 46, 440-464.
4 Hosmer, D. W. and Lemeshow, S. (1980).
A goodness-of-fit test for the multiple logistic regression model.
Communications in Statistics A }10, 1043-1069.
5 Hosmer, D. W., Hosmer, T., Le Cessie, S. and Lemeshow, S. (1997).
A comparison of goodness-of-fit tests for the logistic regression model.
Statistics in Medicine 16, 965-980.
6 Kendall, M. and Stuart, A. (1977).
The Advanced Theory of Statitics. 1, 4th ed.
Macmillan Publishing Co., Inc.: New York.
7 Lachin, J. M. (2000).
Biostatistical Methods.
John Wiley: New York.
8 Lipsitz, S. R., Fitzmaurice, G. M. and Molenberghs, G. (1996).
Goodness-of-fit tests for ordinal response regression models.
Applied Statistics 45, 175-190.
9 McCullagh, P. and Nelder, J. A. (1989).
Generalized Linear Models.
Chapman and Hall: London.
10 MuCulloch, C. E. and Searle, S. R. (2001).
Generalized, Linear, and Mixed Models.
John Wiley: New York.
11 Nelder, J. A. and Wedderburn, R. W. (1972).
Generalized linear models.
Journal of the Royal Statistical Society, Ser. A 135, 370-384.
12 Osius, G. and Rojek, D. (1992).
Normal goodness-of-fit tests for
multinomial models with large degrees of freedom.
Journal of the American Statistical Association 87, 1145-1152.
13 Pearson, Karl (1900).
On the criterion that a given system of deviations from the probable in the case of a correlated system of variables is such that it can be reasonably supposed to have arisen from random sampling.
Phi. Mag. Ser. 50, 157-172.
14 Pigeon, J. G. (1999).
An improved goodness of fit statistic for probability prediction models.
Biometrical Journal 41, 71-82.
15 Rao, C. R. (1963).
Criteria of estimation in large samples.
Sankhya, A 25, 189-206.
16 Rao, C. R. (1973).
Linear Statistical Inference and Its
Applications. 2nd ed.
John Wiley: New York.
17 Tsiatis, A. A. (1980).
A note on a goodness-of-fit test for the logistic regression model.
Biometrika 67, 250-251.
18 Wald, A. (1943).
Tests of statistical hypotheses concerning several parameters when the number of observations is large.
Trans. Am. Math. Soc. 54, 426-482.
19 Wilks, S. S. (1935).
The likelihood test of independence in contingency tables.
Ann. Math. Statist. 6, 190-196.
20 Wilks, S. S. (1938).
The large-sample distribution of the likelihood ratio for testing composite hypotheses.
Ann. Math. Statist. 9, 60-62.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top