|
參考資料 1. Frenkel R. Regulation and physiological function of malic enzyme. Curr. Top. Cell Regul. 9:157-181, 1974. 2. Ochoa, S., Mehler, A. H., and Kornberg, A. Reversible oxidative decarboxylation of malic enzyme. J Biol Chem. 167: 871-872, 1947. 3. Park, S. H., Harris, B. G., and Cook, P. F. pH dependence of kinetic parameters for oxalacetate decarboxylation and pyruvate reduction reactions catalyzed by malic enzyme. Biochemistry, 25: 3752-3759., 1986. 4. Chen, C. Y., Harris, B. G., and Cook, P. F. Isotope partitioning for NAD-malic enzyme from Ascaris suum confirms a steady-state random kinetic mechanism. Biochemistry, 27: 212-219., 1988. 5. Yang, Z., Zhang, H., Hung, H. C., Kuo, C. C., Tsai, L. C., Yuan, H. S., Chou, W. Y., Chang, G. G., and Tong, L. Structural studies of the pigeon cytosolic NADP(+)-dependent malic enzyme. Protein Sci, 11: 332-341., 2002. 6. Hsu, R. Y., Lardy, H. A., and Cleland, W. W. Pigeon liver malic enzyme. V. Kinetic studies. J Biol Chem, 242: 5315-5322., 1967. 7. Schimerlik, M. I. and Cleland, W. W. pH variation of the kinetic parameters and the catalytic mechanism of malic enzyme. Biochemistry, 16: 576-583., 1977. 8. Hermes, J. D., Roeske, C. A., O''Leary, M. H., and Cleland, W. W. Use of multiple isotope effects to determine enzyme mechanisms and intrinsic isotope effects. Malic enzyme and glucose-6-phosphate dehydrogenase. Biochemistry, 21: 5106-5114., 1982. 9. Kiick, D. M., Harris, B. G., and Cook, P. F. Protonation mechanism and location of rate-determining steps for the Ascaris suum nicotinamide adenine dinucleotide-malic enzyme reaction from isotope effects and pH studies. Biochemistry, 25: 227-236., 1986. 10. Karsten, W. E., Chooback, L., Liu, D., Hwang, C. C., Lynch, C., and Cook, P. F. Mapping the active site topography of the NAD-malic enzyme via alanine- scanning site-directed mutagenesis. Biochemistry, 38: 10527-10532., 1999. 11. Liu, D., Karsten, W. E., and Cook, P. F. Lysine 199 is the general acid in the NAD-malic enzyme reaction. Biochemistry, 39: 11955-11960., 2000. 12. Chou, W. Y., Huang, S. M., and Chang, G. G. Functional roles of the N-terminal amino acid residues in the Mn(II)-L- malate binding and subunit interactions of pigeon liver malic enzyme. Protein Eng, 10: 1205-1211., 1997. 13. Chou, W. Y., Huang, S. M., and Chang, G. G. Nonidentity of the cDNA sequence of human breast cancer cell malic enzyme to that from the normal human cell. J Protein Chem, 15: 273-279., 1996. 14. Kuo, C. C., Tsai, L. C., Chin, T. Y., Chang, G. G., and Chou, W. Y. Lysine residues 162 and 340 are involved in the catalysis and coenzyme binding of NADP(+)-dependent malic enzyme from pigeon. Biochem Biophys Res Commun, 270: 821-825., 2000. 15. Chang, G. G., Chang, T. C., and Huang, T. M. Involvement of lysine residue in the nucleotide binding of pigeon liver malic enzyme: modification with affinity label periodate-oxidized NADP. Int J Biochem, 14: 621-627, 1982. 16. Chang, G. G. and Hsu, R. Y. Mechanism of pigeon liver malic enzyme modification of histidyl residues by ethoxyformic anhydride. Biochim Biophys Acta, 483: 228-235., 1977. 17. Wei, C. H., Chou, W. Y., Huang, S. M., Lin, C. C., and Chang, G. G. Affinity cleavage at the putative metal-binding site of pigeon liver malic enzyme by the Fe(2+)-ascorbate system. Biochemistry, 33: 7931-7936., 1994. 18. Wei, C. H., Chou, W. Y., and Chang, G. G. Identification of Asp258 as the metal coordinate of pigeon liver malic enzyme by site-specific mutagenesis. Biochemistry, 34: 7949-7954., 1995. 19. Chang, G. G., Wang, J. K., Huang, T. M., Lee, H. J., Chou, W. Y., and Meng, C. L. Purification and characterization of the cytosolic NADP(+)-dependent malic enzyme from human breast cancer cell line. Eur J Biochem, 202: 681-688., 1991. 20. Hsu, R. Y. and Lardy, H. A. Pigeon liver malic enzyme. II. Isolation, crystallization, and some properties. J Biol Chem, 242: 520-526., 1967. 21. Andrade, C. M., Ferreira, M. F., and Ribeiro, L. P. Cytosolic malate dehydrogenase in muscle extracts of Toxocara canis. Comp Biochem Physiol B, 75: 147-152, 1983. 22. Tang, C. L. and Hsu, R. Y. Reduction of alpha-oxo carboxylic acids by pigeon liver ''malic'' enzyme. Biochem J, 135: 287-291., 1973. 23. Tang, C. L. and Hsu, R. Y. Mechanism of pigeon liver malic enzyme. Modification of sulfhydryl groups by 5,5''-dithiobis(2-nitrobenzoic acid) and N-ethylmaleimide. J Biol Chem, 249: 3916-3922., 1974. 24. Grissom, C. B. and Cleland, W. W. Use of intermediate partitioning to calculate intrinsic isotope effects for the reaction catalyzed by malic enzyme. Biochemistry, 24: 944-948, 1985. 25. Adler-Nissen, J. Enzymatic hydrolysis of soy protein for nutritional fortification of low pH food. Ann Nutr Aliment, 32: 205-216, 1978. 26. Viola, R. E., Cook, P. F., and Cleland, W. W. Stereoselective preparation of deuterated reduced nicotinamide adenine nucleotides and substrates by enzymatic synthesis. Anal Biochem, 96: 334-340, 1979. 27. Chang, G. G., Huang, T. M., and Wuu, J. A. Mechanism of pigeon liver malic enzyme: modification of essential carboxyl groups. Proc Natl Sci Counc Repub China B, 9: 56-66., 1985. 28. Chou, W. Y., Tsai, W. P., Lin, C. C., and Chang, G. G. Selective oxidative modification and affinity cleavage of pigeon liver malic enzyme by the Cu(2+)-ascorbate system. J Biol Chem, 270: 25935-25941., 1995. 29. Delforge, D., Devreese, B., Dieu, M., Delaive, E., Van Beeumen, J., and Remacle, J. Identification of lysine 74 in the pyruvate binding site of alanine dehydrogenase from Bacillus subtilis. Chemical modification with 2,4,6-trinitrobenzenesulfonic acid, n-succinimidyl 3-(2-pyridyldithio)propionate, and 5''-(p-(fluorosulfonyl)benzoyl)adenosine. J Biol Chem, 272: 2276-2284, 1997. 30. Yu, P. H., Durden, D. A., Davis, B. A., and Boulton, A. A. Deuterium isotope effect in gamma-aminobutyric acid transamination: determination of rate-limiting step. J Neurochem, 48: 440-446, 1987. 31. Chang, G. G. and Huang, T. M. Involvement of tyrosyl residues in the substrate binding of pigeon liver malic enzyme. Biochim Biophys Acta, 611: 217-226., 1980. 32. Chang, G. G. and Huang, T. M. Modification of essential arginine residues of pigeon liver malic enzyme. Biochim Biophys Acta, 660: 341-347., 1981. 33. Hsu, R. Y., Mildvan, A. S., Chang, G., and Fung, C. Mechanism of malic enzyme from pigeon liver. Magnetic resonance and kinetic studies of the role of Mn2+. J Biol Chem, 251: 6574-6583., 1976. 34. 陳威男:鴿肝蘋果酸酶234殘基在金屬結合位置的研究,2001 35. 張碩欽:鴿肝蘋果酸酶催化上天們冬胺酸235、257、258功能之研究,2001
|