跳到主要內容

臺灣博碩士論文加值系統

(44.201.97.0) 您好!臺灣時間:2024/04/19 15:06
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:彭福娣
研究生(外文):Peng Fu-Ti
論文名稱:Zac1在HeLa細胞中對AP1活化過程的影響
論文名稱(外文):The effect of Zac1 on the AP1 activation in the HeLa cell
指導教授:黃世明黃世明引用關係
指導教授(外文):Huang Shin-ming
學位類別:碩士
校院名稱:國防醫學院
系所名稱:生物化學研究所
學門:生命科學學門
學類:生物化學學類
論文種類:學術論文
論文出版年:2003
畢業學年度:91
語文別:中文
論文頁數:46
中文關鍵詞:轉錄因子
外文關鍵詞:Zac1AP1
相關次數:
  • 被引用被引用:0
  • 點閱點閱:174
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
HeLa 細胞為一子宮頸上皮細胞癌,其癌化主要因子宮頸上皮細
胞被感染了人類乳突細胞瘤病毒;病毒利用其表現的E6 及E7 蛋白
質分別抑制宿主細胞中p53 及Rb 蛋白質,進而造成細胞生長失去調
控而形成癌化。利用HeLa 細胞,觀察到Zac1 蛋白質能改變原有細
胞對PMA 處理的時間反應曲線。為探討Zac1 如何影響AP1 活性機
轉,首先以C33A 細胞確定Zac1 對PMA 誘發AP1 活性的效果不是
因為HeLa 細胞內的HPV 相關蛋白質表現所致,因為C33A 細胞為子
宮頸上皮細胞未經人類乳突病毒感染。接下來,分別確定Zac1 可透
過c-Jun 全部功能區及c-Fos 的N 端來達成上述效果。而Zac1 可能經
加強c-Jun 及c-Fos 二轉錄因子本身的轉活化活性(transactivation
activity)來增強其對AP1 的活性。在HeLa 細胞內,藉由一廣效性
PKC 抑制劑GF109203X 可降低Zac1 對PMA 誘導AP1 活性的時間反
應曲線,但不會影響Zac1 在C33A 細胞的角色。綜合上述,Zac1 對
AP1 的活化機轉,在PMA 存在與否或不同細胞種類可表現出類似或
相異效果,然其真正調控的機轉仍有待未來作更深入的探討。

HeLa cell, a cervical epithelial cancer cell, is infected by Human Papillomavirus(HPV)which expresses E6 and E7 proteins to inhibit p53 and Rb functions in the host cell, and then causes the cell out of control to be transforming tumorgenesis. In HeLa cell, overexpression of Zac1 may change the curve of the time course in AP1 activity by treating with PMA.
C33A is a non-HPV infected cervical epithelial cell. To study the mechanism of AP1 activation by Zac1 in HeLa and C33A cells, the effects by Zac1 in C33A cells are similar to that in HeLa cells suggested that HPV proteins had no effects on Zac1 functions in AP1 activation. Zac1 could further promote the AP1 activity with overexpression of full length of c-Jun or N-terminal c-Fos, and increase the AP1 activity by enhancing their transactivation of c-Jun and c-Fos. GF109203X, a potent PKC inhibitor, could decrease the PMA-treated strength of the time course in AP1 activity triggering by Zac1 overexpression in HeLa, but not in C33A. In conclusion, the effect on the mechanism of Zac1 in the AP1 activation depends on the treatment of PMA on the tested cells. However, it remains to be further investigated about the real mechanism of
regulation.

正文目錄.............................. I
圖文目錄............................ II
附錄目錄............................ III
縮寫表............................. IV
中文摘要............................ V
英文摘要............................ VI
緒論.............................. 1
實驗材料與方法......................... 6
第一節、實驗材料及相關儀器................... 6
壹、製作功能性片段所使用之相關材料............ 6
貳、細胞株....................... 6
參、化學藥品試劑.................... 7
肆、主要儀器與器材................... 7
第二節、實驗方法........................ 8
壹、質體的構築...................... 8
貳、保存細胞...................... 17
參、細胞培養...................... 18
肆、細胞轉染...................... 19
伍、冷光素報導基因分析................. 20
陸、統計分析...................... 20
結果.............................. 21
討論.............................. 27
參考文獻............................ 44
附錄

Angel P, Imagawa M, Chiu R, Stein B, Imbra RJ, Rahmsdorf HJ, Jonat C, Herrlich P, Karin M. Phorbol ester-inducible genes contain a common cis element recognized by a TPA-modulated trans-acting factor. Cell. 49: 729-739, 1987.
Angel P and Karin M. The role of Jun, Fos and the AP-1 complex in cell-proliferation and transformation. Biochim. and Biophy. Acta. 1072: 129-157, 1991.
Barbosa MS. The oncogenic role of human papillomavirus proteins. Critical Review of oncology. 7: 1-18, 1996.
Bakiri L, Lallemand D, Bossy-Wetzel E, and Yaniv M. Cell
cycle-dependent variations in c-Jun and JunB phosphorylation : a role in the control of cyclin D1 expression. EMBO J. 19: 2056-2068, 2000.
Brown JR, Nigh E, Lee RJ, Ye H, Thompson MA, Sandou F, Pestel RG, and Greenberg ME. Fos family members induce cell cycle entry by activating cyclin D1. Molecular Cell Biology. 18: 5609-5619, 1998.
Chen RH, Juo PC, Curran T, and Blenis J. Phosphorylation of c-Fos at the C-terminus enhances its transformaing activity. Oncogene. 12: 1493-1502, 1996.
Chinenov Y and Kerppola TK. Close encounters of many kinds: Fos-Jun interactions that mediate transcription regulatory specificity. Oncogene. 20: 2438-2452, 2001.
Dhanasekaran N and Reddy EP. Signaling by dual specificity kinases. Oncogene. 17: 1447~1455, 1998.
Huang SM and Stallcup MR. Mouse Zac1, a transcriptional coactivator and repressor for nuclear receptors. Molecular and Cellular Biology. 20: 1855-1867, 2000.
Huang SM, Schonthal AH and Stallcup MR. Enhancement of
p53-dependent gene activation by the transcriptional coactivator Zac1. Oncogene. 20: 22134-2143, 2001.
Hu Y, Jin XM, and Snow ET. AP-1 and NF-κB DNA binding activity and related gene expression. Toxicology Letters. 133: 33-45, 2002.
Jones DL and Munger K. Interaction of papillomavirus E7 protein with cell cycle regulators, Semin. Cancer Biology. 7: 327-337, 1996.
Jonat C, Rahmsdorf HJ, Park KK, Cato AC, Gebel S, Ponta H, and
Herrlich P. Antitumor promotion and antiinflammation: down-modulation of AP-1 (Fos/Jun) activity by glucocorticoid hormone. Cell. 62: 45 1189-1204, 1990.
Kerpola TK and Curran T. Fos-Jun heterodimers and Jun homodimers bend DNA in opposite orientations : implications for transcription factor cooperativity. Cell. 66: 317-326, 1991.
Kerpola TK and Curran T. Selective DNA bending by a variety of bZIP proteins. Mol Cell Biol. 13:5479-5489, 1993.
Landschulz WH, Johnson PF, and Mcknight SL. The leucine zipper : a hypothetical structure common to a new class of DNA binding proteins. Science. 240: 1759-1764, 1988.
Suzukawa K, and Colburn NH. AP-1 transrepressing retinoic acid does not deplete coactivators or AP-1 monomers but may target specific Jun or Fos containing dimmers. Oncogene. 21: 2181-2190, 2002.
Schwarz E, Freese U K, Gissmann L, Mayer W, Roggenbuck B, Stremlau A, and zur Hausen H. Structure and transcription of human papillomavirus sequences in cervical carcinoma cells.
Nature. 314:111-114, 1985.
Salvat C, Jariel-Encontre I, Acquaviva C, Omura S, Piechaczyk M. Differential directing of c-Fos and c-Jun proteins to the proteasome in serum-stimulated mouse embryo fibroblasts. Oncogene. 17: 327-337, 1998.
Spengler D, Waeber C, Pantaloni C, Holsboer F, Bockaert J, Seeburg PH, and Journot L. Differential signal transduction by five splice variants of the PACAP receptor. Nature. 365: 170-175, 1993.
Spengler D, Villalba M, Hoffmann A, Pantaloni C, Houssami S, Bockaert J, and Journot L. Regulation of apoptosis and cell cycle arrest by Zac1, a novel zinc finger protein expressed in the pituitary gland and the brain. The EMBO J.. 16: 2814-2825, 1997.
Thomas M, Pum D, and Banks L. The role of the E6-p53 interaction in the molecular pathogenesis of HPV. Oncogene. 18: 7690-7700, 1999.
Van Dam H and Castellazzi M. Distinct roles of Jun : Fos and Jun : ATF dimers in oncogenesis. Oncogene. 20: 2453-2464, 2001.
Varrault A, Ciani E, Aoiou F, Bilanges B, Hoffmann A, DDantaloni C, Bockaert J, Spengler D, and Journot L. hZac1 encodes a zinc finger protein with antiproliferative properties and maps to chromosomal region frequently lost in cancer. Proceeding of National Academy of Science USA. 95: 8835-8840, 1998.
Whitmarsh AJ and Davis RJ. Transcription factor AP1 regulation by mitogen-activated protein kinase signal transduction pathways. Journal of Molecular Medicine. 74: 589-607, 1996.
Wu EW, Clemens KE, and Heck DV. The human papillomavirus E7
oncoprotein and the cellular transcription factor E2F bind to separate sites on the retinoblastoma tumor suppressor protein. Journal of Virology. 67: 2402-2407, 1993.
Wernis BA, Levine AJ, and Howley PM. Association of human
papillomavirus type 16 and 18 E6 proteins with p53. Science. 248: 76-79, 1990.
Xia Z, Dickens M, Raingeaud J, Davis RJ, Greenberg ME. Opposing
effects of ERK and JNK-p38 MAP kinases on apoptosis. Science. 270: 1326-1331, 1995.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
無相關期刊
 
1. 惡性瘧原蟲可能固醇感受區域蛋白的特性研究
2. 血管張力素第一型及第二型接受器在果糖餵食誘發高血壓及胰島素阻抗的機制中所扮演的角色及其間可能的相互關係
3. 探討大白鼠椎管內注射利度卡因對於嗎啡耐受性之影響:動物行為之變化
4. 神經調節混合膠質細胞一氧化氮的分泌
5. 維生素C抑制膠質細胞被內毒素所誘發產生發炎媒介物質之機制是經由抑制有絲分裂因子-活化蛋白質激酶之活化
6. 維生素D3對內毒素刺激膠質細胞產生一氧化氮、活性氧物質、細胞素及化學趨素之抑制作用及作用機制
7. 精胺酸及醯麩胺酸對小腸上皮細胞的輻射傷害之保護效應
8. 猿病毒腫瘤抗原氮端片段基因轉殖鼠模式之建立及安全性評估
9. 一新發現p53結合蛋白之功能研究
10. 錳型超氧歧化酶抑制攝護腺癌細胞中神經膠原致癌基因表現之研究
11. DRB誘發細胞程式死亡的機制暨調節bcl-x基因表現之研究
12. 負載磷酸二鈉貝皮質醇幾丁聚醣微粒之肺部遞送研究
13. 單細胞藍綠藻Synechococcussp.strainRF-1硝酸鹽同化作用之調節與硝酸還原酵素雙相動力學特性的研究
14. 細胞表面高硫酸化之肝黏醣與日本腦炎病毒感染相關性之探討
15. 細胞色素P450酵素1A1、麩胺基硫轉移酵素M1和P1及甲烯基四氫葉酸還原酵素之基因多形性與罹患肺癌危險性之巢疊病例對照研究