跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.169) 您好!臺灣時間:2024/12/11 14:29
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:戴月華
研究生(外文):YUEH HUA, TAI
論文名稱:血管張力素第一型及第二型接受器在果糖餵食誘發高血壓及胰島素阻抗的機制中所扮演的角色及其間可能的相互關係
論文名稱(外文):The role of angiotensin II AT1 and AT2 receptors and its possible interaction in fructose-induced hypertension and insulin resistance in rats
指導教授:謝博軒
學位類別:碩士
校院名稱:國防醫學院
系所名稱:生理學研究所
學門:醫藥衛生學門
學類:醫學學類
論文種類:學術論文
論文出版年:2003
畢業學年度:91
語文別:中文
論文頁數:81
中文關鍵詞:胰島素阻抗高胰島素血症腎素-血管張力素系統血管收縮素II血管收縮素II第一型接受器血管收縮素II第二型接受器果糖餵食鼠高血壓
外文關鍵詞:insulin resistancehyperinsulinemiarenin-angiotensin systemangiotensin IIAT1AT2Fructose-fed ratshypertension
相關次數:
  • 被引用被引用:0
  • 點閱點閱:158
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在過去的臨床及動物模式的研究證明中顯示,胰島素阻抗及高胰島素血
症和原發性高血壓有顯著的關聯性,而且以往研究報告亦顯示了腎素-血管張力素系統,特別是其中的血管張力素II的作用,可能在此機制中扮演了升高血壓和/或導致胰島素阻抗的角色。
本實驗的目的為探討AT2接受器(AT2R)及AT1接受器(AT1R)在果糖誘發高血壓及胰島素阻抗的動物模式中其是否被活化及其間可能的交互作用。本實驗以SD大白鼠為實驗對象,各組在麻醉狀態下進行插管手術,做左側股靜脈插管以持續灌流葡萄糖、胰島素、藥物及3H3-glucose溶液,另做左側股動脈插管,以供抽取動脈血及測量動脈壓。實驗期間合併3H3-glucose灌流執行正常血糖高胰島素血症箝制試驗,此實驗分為三個階段:第一階段,開始灌流3H3-glucose直到實驗結束,第一階段目的在檢驗各組在基本狀態下葡萄糖代謝速率的變化,第二階段開始合併灌流藥物、vehicle溶液及不定量的葡萄糖水溶液(20% dextrose),目的在於觀察在有藥物的影響之下,血壓及葡萄糖代謝速率的變化,第三階段正常血糖高胰島素血症箝制期間再合併給予胰島素(8 mU/kg/min)及不定量的葡萄糖溶液,觀察各組高胰島素誘發血壓及葡萄糖代謝變化的情形。
實驗結果顯示,餵食果糖的大白鼠組其平均動脈壓和控制組比較起來有明顯上升的情形,給予AT2R拮抗劑後血壓上升程度較果糖餵食組更為明顯,在急性或慢性給予AT1R拮抗劑治療後,其血壓則有明顯下降的現象,然而合併AT1及AT2R拮抗劑急性治療,則防止AT1R拮抗劑所導致的降血壓作用,但在慢性給予AT1R拮抗劑治療下,合併給予AT2R拮抗劑則不影響其作用。大白鼠在餵食果糖後其胰島素刺激全身性葡萄糖吸收、儲存及糖解作用,增加速率顯著低於控制組,而急性給予AT1R拮抗劑則明顯改善其葡萄糖吸收及糖解作用,然而其肝臟葡萄糖產生速率則為明顯上升,慢性給予AT1R拮抗劑則會改善胰島素對葡萄糖吸收、儲存及糖解作用,亦同時改善胰島素抑制肝臟葡萄糖產生速率,急性給予AT1R拮抗劑所產生的改善作用,同時若合併AT2R拮抗劑的給予,則防止了此現象的產生,但在慢性給予AT1R拮抗劑時,合併給予AT2R拮抗劑則不影響其作用。
綜合以上結果得知AT1R及AT2R在果糖餵食所誘發之高血壓及胰島素阻抗之動物模式中其活性皆明顯增加,且AT2R所產生保護的機制在AT1R作用被抑制的情況下,更有明顯作用。然而慢性AT1R拮抗劑治療明顯地減少AT2R在AT1R拮抗劑所造成果糖餵食鼠血壓下降及改善胰島素阻抗機制中扮演角色的重要性。

Backgrounds:
Numerous clinical and animal studies have demonstrated that essential hypertension is correlated with insulin resistance and hyperinsulinemia. It has also shown that the renin-angiotensin system (RAS), especially the angiotensin II may play important role in the development of either hypertension or insulin resistance in several insulin-resistant and hypertension animal models. However, the pathological roles of AT1R and AT2R in the link of these cardiovascular and metabolic dysfunctions are not fully determined.
Purpose:
The aim of the study was to access that activation and interaction of AT1R and AT2R in fructose-induced hypertension and insulin resistance in rats.
Materials and methods:
Male Sprague-Dawley rats were fed 60% fructose-enriched or regular chow diets for 4 weeks before acute experiment. At the end of wks 4, the rats were cannulated under anesthesia. After recovery for 3 days, all experiment was consisted of a 30-min control period and two 90-min test periods. [3H3] glucose as tracer was infused intravenously throughout the experiment. After control period, glucose was infused peripherally as needed to clamp euglycemia. During the two test periods, AT1R antagonist, (losartan, 10mg/kg i.v. bonus at time 0) and AT2R antagonist (PD123319, 50μg/kg/min, i.v.) alone or in combination were given to separate fructose-fed group. In the first test (basal) period, only saline was infused in all groups; in the second test (euglycemic hyperinsulinemic clamp, EHC) period, additional insulin was infused to evaluate insulin-dependent glucose metabolism. In chronic losartan-treated groups, losartan was given by adding in drinking water (10mg/kg/day) for 2 wks before acute experiment. Vehicle or PD123319 was given during two test periods to evaluate the attenuation of AT2R under chronic losartan treatment in fructose induced hypertension and insulin resistance in rats.
Result:
The results showed that plasma glucose levels were not significantly changed in all groups throughout the experiments. Plasma insulin levels were three fold higher in fructose-fed rats than in normal rats with regular diet in the control period and did not change by losartan and/or PD123319 treatment. During EHC period, insulin infusion significantly increased plasma insulin level by 8 folds. Acute losartan treatment reduced the elevated mean blood pressure (MAP) of fructose-fed rats to normal level. In contrast, acute PD123319 infusion further increased MAP of fructose-fed rats. However, the depressor effect of losartan and the pressor effect of PD123319 were not exhibited when both agents were given in combination. During EHC period, acute administration of losartan, but not PD123319, significantly increased the rate of whole body glucose uptake mainly by increasing the rate of whole body glycolysis. However, it further inhibited the insulin-mediated suppression of hepatic glucose production. The effects of insulin sensitivity were not observed when PD123319 was superimposed on losartan. Chronic losartan treatment significantly reversed fructose-induced hypertension and insulin resistance to normal levels. PD123319 infusion did not change the depressor and metabolic effects of losartan treatment.
Conclusion:
These data showed that (1) activation of both AT1R and AT2R are existed in fructose-induced hypertensive and insulin resistant rats. (2) Activation of AT2R counterbalances the pressor and insulin desensitizing effects of AT1R in this hypertensive model. (3) Activation of AT1R is important for the functional activation of AT2R in fructose-induced insulin resistance and hypertension in rats.

頁次
目 錄…………………………………………………………… I
表 次……………………………………………………………III
圖 次……………………………………………………………IV
中文摘要……………………………………………………………VI
英文摘要………………………………………………………….. VIII
第一章 前言……………………………………………………….1
第一節 腎素-血管張力素系統………………………………...3
第二節 AT1R和AT2R與血壓調控及其間可能的交互作用……4
第三節 RAS與胰島素阻抗……………………………………..8
第四節 動物模式………………………………………………10
第二章 實驗目的…………………………………………………11
第三章 材料與方法………………………………………………12
第一節 實驗材料………………………………………………12
第二節 儀器設備………………………………………………12
第三節 化學製劑………………………………………………13
第四節 實驗設計………………………………………………15
第五節 測定方法與計算………………………………………20
第四章 結果……………………………………………………..29
第一節 AT1R拮抗劑的存在與否對AT2R作用的影響……….29
第二節 AT2R在給予急性或慢性AT1R拮抗劑治療中所扮演
的角色………………………………………………..34
第五章 討論……………………………………………………..42
第六章 結論……………………………………………………..53
附錄………………………………………………………………..54
參考文獻…………………………………………………………..74
表 次
Table1、各組體重、血比容、血漿三酸甘油酯濃度及3H3-glucose
放射活性之變化……………………………………………….54
Table2、各組體重、血比容、血漿三酸甘油酯濃度及3H3-glucose
放射活性之變化……………………………………………….55
圖 次
第一節 AT1R拮抗劑的存在與否對AT2R作用的影響
Fig1-1. 各組灌流期間血漿葡萄糖濃度及葡萄糖灌流速率之變化..56
Fig1-2. 各組灌流期間血漿胰島素濃度及胰島素灌流速率之變化..57
Fig1-3. 各組灌流期間平均動脈壓之變化…………………………..58
Fig1-4. 各組灌流期間心跳值之變化………………………………..59
Fig1-5. 各組灌流期間肝臟葡萄糖產生速率之變化………………..60
Fig1-6. 各組灌流期間全身性葡萄糖吸收速率之變化……………..61
Fig1-7. 各組灌流期間全身性葡萄糖儲存速率之變化……………..62
Fig1-8. 各組灌流期間全身性糖解作用速率之變化………………..63
Fig1-9. 各組灌流期間血漿一氧化氮代謝物(NOx)之變化…………64
第二節 AT2R在給予急性或慢性AT1R拮抗劑治療中所扮演
的角色
Fig2-1. 各組灌流期間血漿葡萄糖濃度及葡萄糖灌流速率之變化..65
Fig2-2. 各組灌流期間血漿胰島素濃度及胰島素灌流速率之變化..66
Fig2-3. 各組灌流期間平均動脈壓之變化…………………………..67
Fig2-4. 各組灌流期間心跳值之變化………………………………..68
Fig2-5. 各組灌流期間肝臟葡萄糖產生速率之變化………………..69
Fig2-6. 各組灌流期間全身性葡萄糖吸收速率之變化……………..70
Fig2-7. 各組灌流期間全身性葡萄糖儲存速率之變化……………..71
Fig2-8. 各組灌流期間全身性糖解作用速率之變化………………..72
Fig2-9. 各組灌流期間血漿一氧化氮代謝物(NOx)之變化…………73

參考文獻
1.Zimmet P, Boyko EJ, Collier GR, Courten M. Etiology of the metabolic syndrome: potential role of insulin resistance, leptin resistance, and other players. Annals of the New York Academy of Sciences. 892:25-44, 1999.
2.Reaven GM. Role of insulin resistance in human disease. Diabetes 37:1595-1607, 1988.
3.Matsuzawa Y, Funahashi T, Nakamura T. Molecular mechanism of metabolic syndrome X: contribution of adipocytokines.adipocyte-derived bioactive substances. Annals of the New York Academy of Sciences. 892:146-54, 1999.
4.Ferrannini E, Buzzigoli G, Bonadonna R, Giorico MA, Oleggini M, Graziadei L, Pedrinelli R, Brandi L, Bevilacqua S.. Insulin resistance in essential hypertension. New England Journal of Medicine. 317:350-7, 1987.
5.Modan M, Halkin H, Almog S, Lusky A, Eshkol A, Shefi M, Shitrit A, Fuchs Z. Hyperinsulinemia. A link between hypertension obesity and glucose intolerance. Journal of Clinical Investigation. 75:809-17, 1985.
6.Iimura O, Shimamoto K, Matsuda K, Masuda A, Takizawa H, Higashiura K, Miyazaki Y, Hirata A, Ura N, Nakagawa M. Effects of angiotensin receptor antagonist and angiotensin converting enzyme inhibitor on insulin sensitivity in fructose-fed hypertensive rats and essential hypertensives. American Journal of Hypertension. 8:353-357, 1995.
7.Navarro-Cid J, Maeso R, Perez-Vizcaino P, Cachofeiro V, Ruilope LM, Tamargo J, Lahera V. Effects of losartan on blood pressure, metabolic alterations, and vascular reactivity in the fructose-induced hypertensive rat. Hypertension. 26:1074-1078, 1995.
8.Iyer SN & Datovich MJ. Effect of acute and chronic losartan treatment on glucose tolerance and insulin sensitivity in fructose-fed rats. American Journal of Hypertension. 9:662-668, 1996.
9.Fang T-C & Huang W-C. Role of angiotensin II in hyperinsulinemia-induced hypertension in rats. Journal of Hypertension. 16:1767-1774, 1998.
10.Brands MW, Harrison DL, Keen HL, Gardner A, Shek EW, Hall JE. Insulin-induced hypertension in rats depend on an intact rennin-angiotensin system. Hypertension. 29:1014-1019, 1997.
11.Higashiura K, Ura N, Takada T, Li Y, Torii T, Togashi N, Takada M, Takizawa H, Shimamoto K. The effects of an angiotensin-converting enzyme inhibitor and an angiotensin II receptor antagonist on insulin resistance in fructose-fed rats. American Journal of Hypertension. 13:290-297, 2000.
12.Schalekamp MA. The renin-angiotensin system: new surprises ahead. Journal of Hypertension - Supplement. 9:S10-17, 1991.
13.Timmermans PB, Wong PC, Chiu AT, Herblin WF, Benfield P, Carini DJ, Lee RJ, Wexler RR, Saye JA, Smith RD. Angiotensin II receptors and angiotensin II receptor antagonists. Pharmacological Reviews. 45:205-51, 1993.
14.Siragy HM. The role of the AT2 receptor in hypertension. American Journal of Hypertension. 13:62S-67S, 2000.
15.Carey RM, Wang Z-Q, Siragy HM. Role of the angiotensin type 2 receptor in the regulation of blood pressure and renal function. Hypertension. 35:155-163, 2000.
16.Carey RM, Jin X-H, Siragy HM. Role of the angiotensin AT2 receptor in blood pressure regulation and therapeutic implications. American Journal of Hypertension. 14:98S-102S, 2001.
17.Siragy HM & Carey RM. Protective role of the aniotensin AT2 receptor in a renal wrap hypertension model. Hypertension. 33:1237-1242, 1999.
18.Iyer SN, Katovich MJ. Effect of chronic losartan potassium treatment on fructose-induced hypertension. Life Sciences. 55: PL139-144, 1994.
19.Hein L, Barsh GS, Pratt RE, Dzau VJ, Kobilka BK. Behavioral and cardiovascular effects of disrupting the angiotensin II type 2 receptor gene in mice. Nature. 377: 744-747, 1995.
20.Hein L, Barsh GS, Pratt Re, Dzau VJ, Kobilka BK. Behavioural and cardiovascular effects of disrupting the angiotensin II type-2 receptor in mice. Nature. 377:744-747, 1995.
21.Ichiki T, Labosky PA, Shiota C, Okuyama S, Imagawa Y, Fogo A, Niimura F, Ichikawa I, Hogan BL, Inagami T. Effects on blood pressure and exploratory behavior of mice lacking the angiotensin type 2 receptor. Nature. 377:748-750, 1995.
22.Siragy HM, Inagami T, Ichiki T, Carey RM. Sustained hypersensitivity to angiotensin II and its mechanism in mice lacking the subtype-2 (AT2) angiotensin receptor. Proceedings of the National Academy of Sciences of the United States of America. 96:6506-10, 1999.
23.Siragy HM, Senbonmatsu T, Ichiki T, Inagami T, Carey RM. Increased renal vasodilator prostanoids prevent hypertension in mice lacking the angiotensin subtype-2 (AT2) receptor. Journal of Clinical Investigation. 104:181-8, 1999.
24.Akishita M, Yamada H, Dzau VJ, Horiuchi M. Increased vasoconstrictor response of the mouse lacking the angiotensin II type 2 receptor. Biochemical & Biophysical Research Communications. 261:345-349, 1999.
25.Matrougui K, Loufrani L, Heymes C, Levy BI, Henrion D. Activation of AT (2) receptors by endogenous angiotensin II is involved in flow-induced dilation on rat resistance arteries. Hypertension. 36:659-665, 1999.
26.Gigante B, Piras O, De Paolis P, Porcellini A, Natale A, Volpe M. Role of the angiotensin II AT2—subtype receptors in the blood pressure lowering effect of losartan in salt-restricted rats. Journal of Hypertension. 16:2039-2043, 1999.
27.Tamura M, Takagi T, Howard EF, Landon EJ. Induction of angiotensin II subtypes 2 receptor-mediated blood pressure regulations in synthetic diet-fed rats. Journal of Hypertension. 18:1234-1246, 2000.
28.Tsutsumi Y, Matsubara H, Masaki H, Kurihara H, Murasawa S, Takai S, Miyazaki M, Nozawa Y, Ozono R, Nakagawa K, Miwa T, Kawada N, Mori Y, Shibasaki Y, Tanaka Y, Fujiyama S, Koyama Y, Fujiyama A, Takahashi H, Iwasaka T. Angiotensin II type 2 receptor overexpression activates the vascular kinin system and causes vasodilation. Journal of Clinical Investigation. 104:925-35, 1999.
29.Carey RM, Howell NL, Jin XH, Siragy H. Angiotensin type 2 receptor-mediated hypotension in angiotensin type-1 receptor-blocked rats. Hypertension. 38:1272-1277, 2001.
30.Touyz RM, Endemann D, He G, Li JS, Schiffrin EL. Role of AT2 receptors in angiotensin II-stimulated contraction of small mesenteric arteries in young SHR. Hypertension. 33:366-372, 1999.
31.Widdop RE, Gardiner SM, Kemp RA, Bennett T. Inhibition of the haemodynamic effects of angiotensin II in conscious rats by AT2-receptor antagonists given after the AT1-receptor antagonist, EXP 3174. British Journal of Pharmacology. 107:873-880, 1992.
32.Widdop RE, Gardiner SM, Kemp PA, Bennett T. Central administration of PD 123319 or EXP-3174 inhibits effects of angiotensin II. American Journal of Physiology. 264:H117-125, 1993.
33.Huang Y & Wang DH. Role of AT1 and AT2 receptor subtypes in salt-sensitive hypertension induced by sensory nerve degeneration. Journal of Hypertension. 19:1841-1846, 2001.
34.Rao RH. Effects of angiotensin II on insulin sensitivity and fasting glucose metabolism in rats. American Journal of Hypertension. 7: 655-660, 1994.
35.Henriksen EJ, Jacob S, Kinnick TR, Youngblood EB, Schmit MB, Dietze GJ. ACE inhibition and glucose transport in insulin resistant muscle: roles of bradykinin and nitric oxide. American Journal of Physiology. 277:R332-R336, 1999.
36.Henriken EJ, Jacob S, Kinnick TR, Teachey MK, Krekler M. Selective angiotensin II receptor antagonism reduces insulin resistance in obese Zucker rats. Hypertension. 38: 884-890, 2001.
37.Shiuchi T, Cui T-X, Wu L, Nakagami H, Takeda-Matsubara Y, Iwai M, Horiuchi M. ACE inhibitor improves insulin resistance in diabetic mouse via bradykinin and NO. Hypertension. 40:329-334, 2002.
38.Zavaroni I, Sander S, Sally S, Reaven GM. Effects of fructose feeding on insulin secretion and insulin action in the rat. Metabolism. 29:970-973, 1980.
39.Gunther S, Gimbrone MAT, Alexander RN. Regulation by angiotensin II of its receptors in resistance blood vessels. Nature. 287: 230-2, 1980.
40. Aguilera G, Schirar A, Baukal A, Cat KJ. Angiotensin II receptors: properties and regulation in adrenal glomerulosa cells. Circulation Research. 46: 118-27, 1980.
41. Aguilear G, Catt K. Regulation of vascular angiotensin II receptrs in thee rat during altered sodium intake. Circulation Research. 49: 751-8, 1981.
42. Iwai N, Inagami T. Regulation of the expression of the rat angiotensin II receptor mRNA. Biochemical & Biophysical Research Communications. 182: 1094-9, 1992.
43. Janiak P, Pillon A, Prost JF, Vilaine JP. Role of angiotensin subtype 2 receptor in heointima formation after vascular injury. Hypertension. 20: 737-745, 1992.
44. Nio Y, Matsubara H, Murasawa S, Kanasaki M, Inada MI. Regulation of gene transcription of angiotensin II receptor subtypes in myocardial infarction. Journal Clinical Investigation. 95: 46-54, 1995.
45. Ohkubo N, Matsubara H, Nozawa Y, Mori Y, Murasawa S, Kijima K, Maruyama K, Masaki H, Tsutumi Y, Shibazaki Y, Iwasaka T, Inada M. Angiotensin type 2 receptor are reexpressed by cardiac fibroblasts from failing myopathir hamster hearts and inhibit cell growth and fibrillar collagen metabolism. Circulation. 96: 3954-3962, 1997.
46.Ozono R, Wang ZQ, Moore AF, Inagami T, Siragy HM, Carey RM. Expression of the subtype 2 angiotensin (AT2) receptor protein in the rat kidney. Hypertension. 30: 1238-1246, 1997.
47. Viswanathan M, Saavedra JM. Expression of angiotensin II AT2 receptors in the rat skin during experimental round healing. Peptides. 13: 783-786, 1992.
48. Kobayashi R, Nagano M, Nakamura F, Higaki J, fujioka Y, Ikegami H, Mikami H, Kawaguchi N, Onishi S, Ogihara T. Role of angiotensin II in high fructose induced left ventricular hypertrophy in rats. Hypertension. 21: 1051-1055, 1993.
49. Iyer SN, Katovich MJ. Vascular reactivity to phenylephrine and angiotensin II in hypertensive rats associated with insulin resistance. Clinical & Experimental Hypertension. 18: 227-242, 1996.
50. Giacchetti G, Sechi LA, Griffin CA, Don BR, Mantero F, Schambelan M. The tissue rennin-angiotensin system in rats with fructose-induced hypertension: Overexpression of type 1 angiotension II receptor in adipose tissue. Journal of Hypertension. 18: 695-702, 2000.
51.Collister JP, Soucheray SL, Osborn JW. Chronic hypotensive effects of losartan are not dependent on the actions of angiotensin II at AT 2 receptors. Journal of Cardiovascular Pharmacology. 39: 107-16, 2002.
52.Collister JP, Osborn JW. Area postrema lesion attenuates the long —term hypotensvie effects of losartan in salt-replete rats. American Journal of Physiology. 274: R357-366, 1998.
53.Collister JP, Barbara J, Hornfeldt, Osborn JW. Hypotensvie response to losartan in normal rats. Hypertension. 27: 598-606, 1996.
54.Schuijt MP. de Vries R. Saxena PR. Danser AH. No vasoactive role of the angiotensin II type 2 receptor in normotensive Wistar rats. Journal of Hypertension. 17: 1879-84, 1999.
55.Rasmussen H. The calcium messenger system. New England Journal of Medicine. 314: 1094-1101, 1986.
56. Garrison JC. Borland MK. Florio VA. Twible DA. The role of calcium ion as a mediator of the effects of angiotensin II, catecholamines, and vasopressin on the phosphorylation and activity of enzymes in isolated hepatocytes. Journal of Biological Chemistry. 254: 7147-7156, 1979.
57.Terrettaz J. Assimacopoulos-Jeannet F. Jeanrenaud B. Inhibition of hepatic glucose production by insulin in vivo in rats: contribution of glycolysis. American Journal of Physiology. 250: E346-51, 1986.
58.Dzau JV. Implication of local angiotensin production in cardiovascular physiology and pharmacology. American Journal of Cardiology. 59: 59A-65A, 1987.
59.Jonsson JR, Game PA, Head RJ & Frewin DB. The expression and localization of the angiotensin-converting enzyme mRNA in human adipose tissue. Blood Pressure. 3: 72-75, 1994
60.Hennes MMI, O、Shaughnessy IM, Kelly TM, LaBelle P, Egan BM, Kissebah AH. Insulin-resistant lipolysis in abdominally obese hypertensive individuals: role of the rennin-angiotensin system. Hypertension. 28: 120-126, 1996.
61.Karlsson C, Lindell K, Ottosson M, Sjostrom L, Carlsson B, Carlsson LM. Human adipose tissue expresses angiotensinogen and enzymes required for its conversion to angiotensin II. Journal of Clinical Endocrinology and Metabolism. 83: 3925-3929, 1998.
62.Campbell WB, Jackson EK. Modulation of adrenergic transmission by angiotensin s in the perfused rat mesentery. American Journal of Physiology. 236: H211-H217, 1979.
63.Jordan J, Tank J, Christensen NJ, Franke G, Stoffels M, Luft FC, Boschmann M. Interaction between beta-adrenergic receptor stimulation and nitric oxide release on tissue perfusion and metabolism. Journal of Clinical Endocrinology Metabolism. 86: 2803-2810, 2001.
64.Berry C, Touyz R, Dominiczak F, Webb RC, Johns DG. Angiotensin receptors: signaling, vascular pathophysiology, and interactions with ceramide. American Journal of Physiology. 281: H2337-H2365, 2001.
65.Jones BH, Standridge MK, Moustaid N. Angiotensin II increases lipogenesis in 3T3-L1 and human adipose cells. Endocrinology. 138: 1512-1519, 1997.
66.Smith PH, Woods SC, Porte D Jr. Phentolamine blocks the somatostatin-mediated inhibition of insulin secretion. Endocrinology. 98: 1073-6, 1976.
67.Malm D, Vonen B, Burhol PG., Florholmen J. The interaction between cAMP-dependent and cAMP-independent mechanisms in mediating the somatostatin inhibition of insulin secretion in isolated rat pancreatic islets. Acta Physiologica Scandinavica. 143: 305-10, 1991.
68.Hsu WH, Xiang HD, Rajan AS, Kunze DL, Boyd AE 3rd. Somatostatin inhibits insulin secretion by a G-protein-mediated decrease in Ca2+ entry through voltage-dependent Ca2+ channels in the beta cell. Journal of Biological Chemistry. 266: 837-43, 1991.
69.Mimura A, Kageyama S, Maruyama M, Ikeba Y, Isogai Y. Insulin sensitivity test using a somatostatin analogue, octreotide (sandostatin). Hormone & Metabolic Research. 26: 184-187, 1994.
70.Saito S, Hirata Y, Emori T, Imai T, Marumo F. Angiotensin II activates endothelial constitutive nitric oxide synthase via AT1 receptors. Hypertension Research — Clinical & Experimental. 19: 201-206, 1996.
71.Kalinowski L, Matys T, Chabielska E, Buczko W, Malinski T. Angiotensin II AT1 receptor antagonists inhibit platelet adhesion and aggregation by nitric oxide release. Hypertension. 40: 521-527, 2002.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊