跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.174) 您好!臺灣時間:2024/12/03 20:02
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:黃健維
研究生(外文):Chien-Wei Huang
論文名稱:攜帶人類乳突瘤病毒16型L1基因之腺相關病毒、人類乳突瘤病毒16型L1類病毒顆粒、人類乳突瘤病毒16型L1DNA和攜帶人類乳突瘤病毒16型L1基因之腺相關病毒合併攜帶GM-CSF基因之腺病毒四種預防性子宮頸癌疫苗的比較
論文名稱(外文):Comparisons between four prophylactic cervical carcinoma vaccines including AAV-L1, HPV 16 L1 VLPs, HPV 16 L1 DNA, and AAV-L1+Ad-GM-CSF
指導教授:陳小梨陳小梨引用關係
指導教授(外文):Show-Li Chen Ph.D
學位類別:碩士
校院名稱:國防醫學院
系所名稱:微生物及免疫學研究所
學門:生命科學學門
學類:微生物學類
論文種類:學術論文
論文出版年:2003
畢業學年度:91
語文別:中文
論文頁數:83
中文關鍵詞:預防性子宮頸癌疫苗
外文關鍵詞:prophylactic cervical carcinoma vaccines
相關次數:
  • 被引用被引用:0
  • 點閱點閱:346
  • 評分評分:
  • 下載下載:45
  • 收藏至我的研究室書目清單書目收藏:2
子宮頸癌是台灣婦女癌症發生率排名第一的惡性腫瘤,且高居台灣女性癌症死亡率第五位,也是全世界婦女常見的癌症。子宮頸癌的發生,除了多產婦,多重性伴侶外,可能和human papillomavirus(HPV types 16,18)的感染有關。根據國內外的研究,子宮頸癌患者若HPV測定為陽性,則HPV-16佔了50%左右。HPV具有八個早期基因和二個晚期基因,其中,晚期基因能夠轉譯為外鞘蛋白,而外鞘蛋白又可以分為主要外鞘蛋白(major capsid protein,即L1 protein,佔80%)和次要外鞘蛋白(minor capsid protein,即L2 protein,佔20%),文獻指出,L1 protein能夠自行組裝成為virus-like particles (VLPs)的結構,且VLPs的傳染途徑及感染力都與天然的HPV相當,能夠在實驗動物身上引發高濃度的抗體免疫反應,因此,我們利用L1 protein的此項特性來從事預防性疫苗的研究。
另外,我們以腺相關病毒(adeno-associated virus,即AAV)當作載體,利用三種不同的質體DNA包括pXX6-YP,pXX2-YP及pXX-16 L1共同轉染293細胞,可以生產出攜帶L1基因的腺相關病毒,也就是recombinant AAV-16 L1,亦會引發抗體免疫反應,至於L1 DNA,亦有文獻指出可以當作疫苗來誘發抗體免疫反應。本實驗室之前利用AAV-L1及L1 DNA當作疫苗給予小鼠,並評估兩者之間對於引發L1-specific抗體的能力,結果發現AAV-L1的表現優於L1 DNA。故,我們承襲之前的研究,除了AAV-L1及L1 DNA外,再加上L1 protein,以肌肉注射方式將此三種疫苗給予小鼠,再用ELISA來比較他們之間對於引發專一性抗體的的差異性,結果是L1 protein的表現大於AAV-L1,而L1 DNA則表現最差。
根據文獻,GM-CSF能夠藉由促使macrophages及dendritic cells的增加而加強antigen presentation的能力,提供一個環境使免疫反應得以加強。因此,我們又利用腺病毒(adenovirus)來攜帶GM-CSF生產出Ad-GM-CSF,以Ad-GM-CSF合併AAV-L1的協同作用,亦能夠引發小鼠的抗體免疫反應,甚至高於VLPs的反應。同時,除了L1-specific antibody的測定外,我們再取小鼠血清用ELISA作IL-4及IFN-的測定,以期能夠更深入瞭解是否進行Th1或Th2路徑。
目前,臨床上對於子宮頸癌的治療多以外科手術為主,而以放射線治療及化學治療為輔,但是,對其預後和轉移的避免都沒有真正令人滿意的結果。因此,本研究利用人類乳突瘤病毒之L1 protein當作疫苗,與其它AAV-L1疫苗,或是AAV-L1合併Ad-GM-CSF疫苗,甚至說L1 DNA疫苗做一比較,以期能夠找到一個真正具有潛力的子宮頸癌預防性疫苗。

According to the statistical incidences in Taiwan, cervical carcinoma is the first common malignancy in recent years and remains the fifth cause of deaths due to malignancies in women. Besides,it always belongs to one of the usual cancers all over the world. The reasons of cervical carcinoma are numerous inclusive of multiparity,and multiple sexual partners;the major one is the infection of human papillomavirus ( HPV ),especially the types 16 and 18. Many documents indicate that if patients with certain cervical carcinoma reveal positive reactions of human papillomavirus infection,the type 16 accounts for 50%.
HPV owns eight early genes and two late genes. Among them, the late genes can translate into outer sheath proteins;they can divide into major capsid protein ( L1 protein ) and minor capsid protein ( L2 protein ).Papers point out that L1 protein can self-assemble into the structure of virus-like particles ( VLPs );the routes of infection and infective activities are similar to those of nature HPV. In addition, VLPs can induce high titers of neutralizing antibodies in experimental animals. So,we utilized the characteristics of L1 protein to reseach the prophylactic HPV vaccine.
We used adeno-associated virus ( AAV ) as a vector and combined three different plasmids including pXX6-YP,pXX2-YP and pXX-16 L1 to cotransfect the 293 cells in order to produce the recombinant AAV-16 L1.There are also papers showed that AAV-L1 can cause immune responses to induce neutralizing antibodies. As to L1 DNA, it can give rise to the same responses as well.
Our laboratory used to take AAV-L1 and L1 DNA as prophylactic HPV vaccines to give mice and evaluated the activities to evoke L1-specific antibodies.The results revealed that the expression of AAV-L1 was superior to that of L1 DNA.So,we followed the previous research and integrated three prophylactic HPV vaccines including AAV-L1,L1 protein and L1 DNA to give mice via muscular and venous injections. Then, we made use of ELISA (enzyme-linked immunosorbent assay) to compare their differences of inducing the neutralizing antibodies. The outcome showed that the expression of L1 protein was better than that of AAV-L1 and the latter was better than the expression of L1 DNA.
Based on research reports,GM-CSF can enhance the activity of antigen presentation by promoting the increase of macrophages and dendritic cells, and cause an environment to strengthen the immune responses. So, we utilized adenovirus as a vector to carry GM-CSF gene to produce Ad-GM-CSF;then,we combined AAV-L1 with Ad-GM-CSF to be vaccines to give mice and tested the neutralizing antibodies. The results illustrated that the expression of combination was superior to that of L1 protein alone.Besides, we checked the concentrations of IL-4 and IFN- to further investigate if the immune response would go on Th1 or Th2 pathway.
Currently, the treatments of cervical carcinoma in clinical are surgery,radiotherapy and chemical therapy.But, there was no truly satisfying achievements in progress and prevention of metastasis.So, we compared the above mentioned vaccines to research which one was really available,and we hoped to find out a pontential prophylactic HPV vaccine for prevention of cervical carcinoma.

目錄 -----------------------------------------------------1
圖目錄 ---------------------------------------------------4
中文摘要 -------------------------------------------------5
英文摘要 -------------------------------------------------7
一 前言
第一節 緒論 ---------------------------------------10
第二節 子宮頸癌與人類乳突瘤病毒之關係 -------------10
第三節 人類乳突瘤病毒的基本特性 -------------------11
第四節 人類乳突瘤病毒的外鞘蛋白 -------------------12
第五節 L1 protein vaccine的發展 -------------------14
第六節 利用AAV作為輸送基因的載體 -----------------23
第七節 發展子宮頸癌的腫瘤疫苗 ---------------------25
主題一. 攜帶人類乳突瘤病毒16型L1基因之腺相關
病毒、人類乳突瘤病毒16型L1類病毒顆粒
及人類乳突瘤病毒16型L1 DNA三種預防性
子宮頸癌疫苗的比較 ------------------------------26
二.材料與方法(1)
壹. 細胞培養 --------------------------------------26
貳. 由桿狀病毒系統生產L1 protein [即virus-like
particles (VLPs)] -----------------------------27
參. 生產攜帶人類乳突瘤病毒16型L1基因
之腺相關病毒 ----------------------------------28
肆. 細胞感染 (infection) --------------------------39
伍. 細胞轉染 (transfection)--磷酸鈣沈澱法 ---------39
陸. 西方點墨分析法 (Western blot) -----------------40
柒. ELISA (Enzyme-Linked Immunosorbent Assay) ------42
三.結果(1)
壹. 以西方點墨分析法評估L1 protein是否正確 -------45
貳. 以限制酵素檢查三種質體DNA ---------------------46
參. 以dot-blot評估AAV-L1的濃度 ------------------46
肆. 以西方點墨法評估AAV-L1是否可生產L1 protein ---47
伍. 以ELISA評估L1-specific antibody的表現 -------47
四 討論(1) ----------------------------------------------51
主題二. 攜帶人類乳突瘤病毒16型L1基因之腺相關
病毒合併攜帶GM-CSF基因之腺病毒和人類
乳突瘤病毒16型L1類病毒顆粒兩種預防性
子宮頸癌疫苗的比較 ------------------------------53
二.材料與方法(2)
壹. 生產攜帶GM-CSF的腺病毒 -----------------------54
貳. ELISA (Enzyme-Linked Immunosorbent Assay)------56
三.結果(2)
壹. 以ELISA評估GM-CSF的表現 ---------------------57
貳. 以ELISA評估L1-specific antibody,IL-4
及IFN-的表現 --------------------------------57
四.討論(2) ----------------------------------------------63
五.參考文獻 ---------------------------------------------66

1. 行政院衛生署. 91年台灣地區10大癌症死因. 2003. 6
2. 國家衛生研究院. 子宮頸癌篩檢及治療共識. 1998.1
3. Brinton LA, Hamman RF, Huggins GR, Lehman HF, Levine RS, Mallin K and Fraumeni JF Jr: Sexual and reproductive risk factors for invansive cervical cancer. J Natl. Cancer Inst. 79: 23-30, 1987
4. Clarke EA, Morgan RW and Newman AM: Smoking as a risk factor in cancer of the cervix: additional evidencefrom a case-control study. Am. J. Epidemiol. 115: 59-66, 1982
5. Herrero R, Brinton LA, Reeves WC, Brenes MM, Tenorio F, de Britton RC, Gaitan E, Garcia M and Rawls WE: Sexual behavior, venereal diseases, hygiene practices, and invansive cervical cancer in a high-risk population. Cancer 65: 380-386, 1990
6. Gupta J: Association of HPV type 16 with neoplastic lesions of vulva by in situ hybridization. Am. J. Pathol. 127: 206-12, 1987
7. Zur Hausen H, MeinHof W, Scheiber W and Bornkamann GW: Attempts to detect virus sequences in human tumors. Int. J. Cancer. 13: 652-6, 1974
8. Zur Hausen H: Human papillomaviruses and their possible role in squamous cell carcinomas. Curr. Top. Micro. Immunol. 78: 1-30, 1977
9. Zur Hausen H: Papillomaviruses as carcinoma viruses. Adv. Viral. Oncol. 8: 1-26, 1989
10. Choo KB, Shen HD, Leung WY and Lee YN: A distinct difference in the
prevalence of papillomavirus infection in cytologically normal and neoplastic
cells of the uterine cervix. Chi. Med. J. (Taipei). 42: 1-6, 1988
11. Chen TM, Chen CA, Wu CC, Hung SU, Chang CF and Hsieh CY: The
genotypes and prognostic significance of human papillomavirus in cervical cancer.
Int. J. Cancer 57: 181-184, 1994.
12. Trus BL, Roden RBS, Greenstone et al.: Novel structural features of Bovine
Papillomavirus capsid revealed by a three dimensional reconstruction to 9Å
resolution. Nature Struct. Biol. 4: 413-420, 1997
13. Alani RM and Munger K: Human papillomavirus and associated malignancies.
J. Clin. Pathol. 16: 330-7, 1998
14. Sonnex C: Human papillomavirus infection with particular reference to genital
diseases J. Clin. Pathol. 51: 643-8, 1998
15. Danos O, Giri I, Thierry F and Yaniv M: Papillomavirus genomes: sequences
and cosequences. J. Int. Dermatol. 83: 7-11, 1984
16. Howley PM and Schlegel R: The human papillomaviruses. Am. J. Med. 85:
155-8, 1988
17. Kirnbauer, J Taub, H Greenstone, R Roden, M Durst, L Gissmann, DR
Lowy, and JT Schiller: Efficient self-assembly of human papillomavirus type 16
L1 and L1-L2 into virus-like particles. Virol. 67: 6929-6936, 1993
18. Christoph Volpers, Peter Schirmacher, Rolf E. Streeck, and Martin Sapp:
Assembly of the Major and the Minor Capsid Protein of Human Papillomavirus
Type 33 into Virus-like Particles and Tubular Structures in Insect Cells. Virol.
200: 504-512, 1994
19. Jian Zhou, Xiao Yi Sun, Deborah J. Stenzel, and Ian H.Frazer: Expression of
Vaccinia Recombinant HPV 16 L1 and L2 ORF Proteins in Epithelial Cells Is
Sufficient for Assembly of HPV Virion-like Particles. Virol 185: 251-257, 1991
20. R. Kirnbauer, F. Booy, N. Cheng, D. R. Lowy, and J. T. Schiller:
Papillomavirus L1 major capsid protein self-assembles into virus-like particles
that are highly immunogenic. Proc. Natl. Acad. Sci. USA. 89: 12180-12184, 1992
21. Nardelli-Haefliger D, Roden RBS, Benyacoub J et al.: Human papillomavirus
type 16 virus-like particles expressed in attenuated Salmonella typhimurium elicit
mucosal and systemic neutralizing antibodies in mice. Inf. Immun. 65: 3328-3336,
1997
22. Rose RC, Bonnez W, Reichman RC, and Garcea RL: Expression of human
papillomavirus Type 11 L1 protein in insect cells.: in vivo and in vitro assembly
of viruslike particles. J. Virol. 67: 1936-1944, 1993
23. Hagensee Me, Yaehashi N, and Galloway DA: Self-assembly of human
papillomavirus Type 1 capsids by expression of the L1 protein alone or by
coexpression of the L1 and L2capsid proteins. J. Virol. 67: 315-322, 1993
24. Hofmann K, Cook J, Joyce J et al.: Sequence determination of Human
Papillomavirus 6a and assembly of virus-like particles in Saccharomyces
cerevisiae. Virology. 209: 506-518, 1995
25. Volpers C, Schirmacher P, Streeck RE, and Sapp M: Assembly of the major
and the minor capsid protein of human papillomavirus Type 33 into virus-like
particles and tubular structures in insect cells. Virology. 200: 504-512, 1994
26. Schiller JT, and Lowy DR: Papillomavirus-like aprticles and HPV vaccine
development. Semin. Cancer Biol. 7: 373-382, 1996
27. Zhang, W. et al.: Expression of human papillomavirus type 16 L1 proteins in
Escherichia coli: denaturation, renaturation and self-assembly of virus-like
particles in vitro. Virol. 243: 423-431, 1998
28. Pirkko Heino, Joakim Dillner, and Stefan Schwartz: Human Papillomavirus
Type 16 Capsid Proteins Produced from Recombinant Semliki Forest Virus
Assemble into Virus-like Particles. Virol. 214: 349-359, 1995
29. John T. Schiller: Papillomavirus-like particle vaccines for cervical cancer. Mol.
Med. Today. 5: 209-215, 1999
30. Frazer I: Strategies for immunoprophylaxis and immunotherapy of
papillomaviruses. Clin. Dermatol. 15: 285-297, 1997
31.Jochmus I, Schafer K, Fath S, Muller M, and Gissmann L: Chimeric virus-like
particles of the human papillomavirus type 16 as a prophylactic and therapeutic
vaccine. Arch. Med. Res. 30: 269-274, 1999
32. Christensen ND, Kirnbauer R, Schiller JT et al.: Human papillomavirus types
6 and 11 have antigenically distinct strongly immunogenic conformationally
dependent neutralizing epitopes. Virol. 205: 329-335, 1994
33. Lowe RS, Brown DR, Bryan JT et al.: Human papillomavirus type 11(HPV
11)neutralizing antibodies in the serum and genital mucosal secretions of African
green monkeys immunized with HPV-11 virus-like particles expressed in yeast. J.
Infect. Dis. 176: 1141-1145, 1997
34. W. F. H. Jarrett, K. T. Smith, B. W. O’Neil, J. M. Gaukroger, L. M.
Chandrachud, G. J. Grindlay, G. M. Mcgarvie, and M. S. Campo: Studies on
Vaccination against Papillomavirus: Prophylactic and Therapeutic Vaccination
with Recombinant Structure Proteins. Virol. 184: 33-42, 1991
35. Kirnbauer R, Chandrachud L, O’Neil B et al.: Virus-like particles of Bovine
Papillomavirus type 4 in prophylactic and therapeutic immunization. Virol. 219:
37-44, 1996
36. Xiao Song Liu, Ibtissam Abdul-Jabbar, Ying Mei Qi, Ian H. Frazer, and Jian
Zhou: Mucosal Immunization with Papillomavirus Virus-like Particles Elicits
Systemic and Mucosal Immunity in Mice. Virol. 252: 39-45, 1998
37. Yi-Ling Lin, Lee A. Borenstein, Ramiah Selvakumar, Rafi Ahmed, and Felix
O. Wettstein: Effective Vaccination against Papilloma Development by
Immunization with L1 or L2 Structural Protein of Cottontail Rabbit
Papillomavirus. Virol. 187: 612-619, 1992
38. Yi-Ling Lin, Lee A.Borenstein, R. Ahmed, and Felix O. Wettstein: Cottontail
Rabbit Papillomavirus L1 Protein-Based Vaccines: Protection Is Achieved Only
with a Full-Length, Nondenatured Product. J. Virol. 67: 4154-4162, 1993
39. F Breitburd, R Kirnbauer, NL Hubbert, B Nonnenmacher, C
Trin-Dinh-Desmarquet, G Orth, JT Schiller and DR Lowy: Immunization with
viruslike particles from cottontail rabbit papillomavirus (CRPV) can protect
against experimental CRPV infection. J. Virol., 69: 3959-3963, 1995
40. ND Christensen, CA Reed, NM Cladel, R Han and JW Kreider: Immunization
with viruslike particles induces long-term protection of rabbits against challenge
with cottontail rabbit papillomavirus. J. Virol., 70: 960-965, 1996
41. Suzich, J. A. et al.: Systemic immunization with papillomavirus L1 protein
completely prevents the development of viral mucosal papillomas. Proc. Natl.
Acad. Sci. U.S.A. 92: 11553-11557, 1995
42. Hang Yuan, Patricia A. Estes, Yan Chen, Joseph Newsome, Vanessa A.
Olcese, Robert L. Garcea, and Richard Schlegel: Immunization with a
Pentameric L1 Fusion Protein Protects against Papillomavirus Infection. J. Virol.
75: 7848-7853, 2001
43. Dianne Marais, Jo-Ann Passmore, James Maclean, Robert Rose and
Anna-Lise Williamson: A recombinant human papillomavirus (HPV) type
16L1-vaccinia virus murine challenge model demonstrates cell-mediated
immunity against HPV virus-like particles. J. Gen. Virol. 80: 2471-2475, 1999
44. Rose RC, Lane C, Wilson S, Suzich JA, Rybicki E, and Williamsonal: Oral
vaccination of mice with human papillomavirus virus-like particles induces
systemic virus-neutralizing antibodies. Vaccine. 17: 2129-2135, 1999
45. Thomas J. Palker, Juanita M. Monteiro, Melissa M. Martin, Christine
Kakareka, Judith F. Smith, James C. Cook, Joseph G. Joyce, and Kathrin U.
Jansen: Antibody, cytokine and cytotoxic T lymphocyte responses in
chimpanzees immunized with human papillomavirus virus-like particles. Vaccine.
19: 3733-3743, 2001
46. Hagensee ME, Carter JJ, Wipf GC, and Galloway DA: Immunization of mice
with HPV vaccinia virus recombinants generates serum IgG, IgM, and mucosal
IgA antibodies. Virol. 206: 174-182, 1995
47. Bamelli, C. et al.: Nasal immunization of mice with human papillomavirus type
16 virus-like particles elicits neutralizing antibodies in mucosal secretions. J.
Virol. 72: 8220-8229, 1998
48. Marloes L. H. De Bruijn, Heather L. Greenstone, Hans Vermeulen, Cornelis
J. M. Melief, Douglas R. Lowy, John T. Schiller, and W. Martin Kast:
L1-specific Protection from Tumor Challenge Elicited by HPV16 Virus-like
Particles. Virol. 250: 371-376, 1998
49. Da Silva DM, Pastrana DV, Schiller JT, and Kast WM. Effect of preexisting
neutralizing antibodies on the anti-tumor immune response induced by
chimeric human papillomavirus virus-like particle vaccines. Virol. 290(2):
350-60, 2001
50. Bosch FX, Munoz N, Sherman M, Jansen A, Peto J, Schiffman M, Shan KV,
and Manos M: The prevalence of HPV in cervical cancer: a worldwide
perspective. J. Natl. Cancer Inst. 87: 796-802, 1995
51. Wakabayashi MT, Da Silva DM, Potkul RK, and Kast W: Comparison of
human papillomavirus type 16 L1 chimeric virus-like particles versus
L1/L2 chimeric virus-like particles in tumor prevention. Intervirol.
45(4-6): 300-7, 2002
52. Roden, RBS. et al.: Assessment of the serological relatedness of genital human
papillomavirus by hemagglutination inhibition. J. Virol. 70: 3298-3301, 1996
53. Zhaohui Wang, Neil Christensen, John T. Schiller and Joakim Dillner: A
monoclonal antibody against intact human papillomavirus btype 16 capsids blocks
the serological reactivity of most human sera. J. Gen. Virol. 78: 2209-2215, 1997
54. McNeil, C: HPV vaccines for cervical cancer move toward clinic, encounter
social issues. J. Natl. Cancer Inst. 89: 1664-1666, 1997
55. Clayton D. Harro, Yuk-Ying Susana Pang, Richard B. S. Roden, Allan
Hildesheim, Zhaohui Wang, Mary Jane Reynolds, T. Christopher Mast,
Robin Robinson, Brian R. Murphy, Ruth A. Karron, Joakim Dillner, John T.
Schiller, and Douglas R. Lowy: Safety and Immunogenicity Trial in Adult
Volunteers of a Human Papillomavirus 16 L1 Virus-Like Particle Vaccine. J Natl.
Cancer Inst. 93: 284-292, 2001
56. Franceschi S: Human papillomavirus: a vaccine against cervical
carcinoma uterine. Epidemiol Prev. 26(3):140-4, 2002
57. Schiffman M, Herrero R, Hildesheim A, Sherman ME, Bratti M, Wacholder
S, Alfaro M, Hutchinson M, Morales J, Greenberg MD, and Lorincz AT:
HPV DNA testing in cervical cancer screening: results from women in ahigh-risk
province in COSTA Rica. J. Am Med Assoc. 283: 87-93, 2000
58. Laura A. Koutsky, Kevin A. Ault, Cosette M. Wheeler, Darron R. Brown,
Eliav Barr, France B. Alvarez, R.N., Lisa M. Chiacchierini, and Kathrin U.
Jansen: A controlled trial of a human papillomavirus type 16 vaccine. N Engl J
Med. 347: 1645-1651, 2002
59. Li Fang Zhang, Jian Zhou, Shao Chen, Lian Lian Cai, Qi Yu Bao, Fei Yun
Zheng, Jie Qiang Lu, Jagadish Padmanabha, Kylie Hengst, Karen Malcolm,
and Ian H. Frazer: HPV 6b virus like particles are potent immunogens
without adjuvant in man. Vaccine. 18: 1051-1058, 2000
60. Thomas G. Evans, William Bonnez, Robert C. Rose, Scott Koenig, Lisa
Demeter, JoAnn A. Suzich, Diane O’Brien, Meredith Campbell, Wendy I.
White, James Balsley, and Richard C. Reichman: A Phase 1 Study of a
Recombinant Viruslike Particle Vaccine against Human Papillomavirus Type 11 in
Healthy Adult Volunteers. J. Infect. Dis. 183: 1485-1493, 2001
61. Martyn Plummer, and Silvia Franceschi: Strategies for HPV prevention. Virus
Res. 89: 285-293, 2002
62. Bouvet, J. P., Belec. L, Pires. R, and Pillot. J: Immunoglobulin G antibodies in
human vaginal secretions after parenteral vaccination. Infect. Immun. 62:
3957-3961, 1994
63. Blacklow NR: Adeno-associated viruses of human. In:Pattison J(ed),
Parvoviruses and humam disease. CRC Press: Boca Raton , FL,pp165-174, 1988
64. Carter BJ: The growth cycle of Adeno-associated viruses In:Tjissen P(ed).
Handbook of panvoviruses Vol1,CRC Press: Boca Raton , FL,pp155-168, 1990
65. Carter BJ, Mendelson E and Trempe JP: AAV DNA Replication, integration
and genetic, In: Tjissen P(ed). Handbook of panvoviruses Vol1,CRC Press: Boca
Raton , FL,pp169-226, 1990
66. Berns KI: Parvoviridae and their replication. In:Fields BN et al (eds) Virology .
Raven Press: New York NY ,pp1743-1764, 1990
67. Hoggan MD, Thomas GF and Johnson FB: Continous carriage of adeno-
associated virus genome in cell culture in the absence of helper adenovirous In:
Proceedings Of 4 Le Petit Colloguium, Cocoyac, Mexico, North- Holland,
Amsterdam, 99243-253, 1972
68. Srivastava A, Lusby EW and Berns KI: Neucleotide sequence and organization
of the Adeno-associated viruses genome J. Virol. 45:555-564, 1993
69. Mendelson E, Trempe JP and Carter BJ: Identification of the trans-acting rep
proteins of Adeno-associated virus using antibodies to a synthetic polypeptide. J.
Virol. 60: 823-832, 1986
70. Tratschin JD, Miller IL and Carter BJ: Genetic analysis of Adeno-associated
virus: properties of deletion mutants lonstructed in vitro and evidence for an
Adeno-associated virus replication function. J. Virol. 51: 611-618, 1984
71. Xiao X, Li J and Samulski RJ: Production of High-Titer recombinant
adeno-associated virus vectore in the absence of heiper adenovirus. J. Virol. 72:
2222-2232,1998
72. Xiao X, Li J, and Samulski RJ: Efficient long-term gene transfer into muscle
tissue of immunocompetent mice by adeno-associated virus vector. J. Virol. 70:
8098-8108, 1996
73. Neil D.Christensen, Joakim Dillner, Carina Eklund, Joseph J. Carter,
Gregory C. Wipf, Cynthia A. Reed, Nancy M. Cladel, and Denise A.
Galloway: Surface Conformational and Linear Epitopes on HPV-16 and HPV-18 L1 Virus-like Particles as Defined by Monoclonal Antibodies. Virol. 223: 174-184, 1996
74. Alba-Lucia Combita, Antoine Touze, Latifa Bousarghin, Neil D. Christensen,
and Pierre Coursaget: Identification of Two Cross-Neutralizing Linear Epitopes within the L1 Major Capsid Protein of Human Papillomaviruses. J. Virol. 76: 6480-6486, 2002
75. Martin R. Stampfli, Ryan E. Wiley, G. Scott Neigh, Beata U. Gajewska,
Xue-Feng Lei, Denis P. Snider, bZhou Xing, and Manel Jordana: GM-CSF
Transgene Expression in the Airway Allows Aerosolized Ovalbumin to Induce
Allergic Sensitization in Mice. J. Clin. Invest. 102: 1704-1714, 1998

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top