|
參考文獻 (References) 1. Patrick R. Murray., Ken S. Rosenthal., George S. Kobayashi., Michael A. Pfaller. Medical microbiology 4th . Mosby. p.39. 2. Lin WP., Yanga YW., Tsoub TL., Jib DD., Tangb ST., Shiauc CY., Chend CH. and Liu YT. In vitro and in vivo antipseudomonal activity and acute toxicity of the newly synthesized Fluoroquinolonyl ampicillin derivatives. Submitted to The Journal of Laboratory and Clinical Medicine. 3. Naoki , K., Haru, K., Kaori, T. —B., Kunitomo, W., and Kazue, U. J. 1997. Comparative in-vitro and in-vivo activity of AM-1155 against anaerobic bacterial . Antimicrobial Chemotherapy 40:631-637. 4. Eiji, W. and Susumu, M. 1994. In vitro antibacterial activity of AM-1155, a novel 6-fluoro-8-methoxy quinolone. Antimicrobial Agents and Chemotherapy. Mar. 38(3): 594-601. 5. Hiroshi, K., Akira, I., Satoshi, M., Segio, S. and Tsutomu, I. 1980. Structure- activity relationships of antibacterial 6,7-and 7,8-disubstituted 1-alkyl-1,4- dihydro-4-oxoquinolone-3-carboxylic acids. J. Med. Chem. 23:1358-1363. 6. Drlica, K. 1999. Mechanisms of fluoroquinolone action. Curr. Opin. Microbiol. 2:504—508. 7. Fiaccadori F. . Fluoroquinolones: a new era in antibiotic therapy ? Annali Italiani di Medicina Interna. 7(1):46-50, 1992 Jan-Mar. 8. E, Wakabayashi. and S, Mitsuhashi. In vitro antibacterial activity of AM-1155, a novel 6-fluoro-8-methoxy quinolone. 1994. Antimicrobial agents and chemotherapy 38:594-561. 9. 黃啟嘉, 醫用微生物學18th , 合記圖書出版社, 上冊p.30, 37-38, 220-221, 231-232 ; 下冊232-239. 10. 蔡文城, 微生物學3th ,藝軒圖書出版社, p.27, 143,174, 180-181. 11. George N. R. Forty years of β-lactam research. Journal of Antimicrobial Chemotherapy (1998) 41, 589—603. 12. Fleming, A. (1929). On the antibacterial action of cultures of Penicillium, with special reference to their use in the isolation of B.influenzae. British Journal of Experimental Pathology 10, 226—36. 13. J. A. Kelly, O. Dideberg, P. Charlier, J. P. Wery, M. Libert, P. C. Moews, J. R. Knox, C. Duez, CL. Fraipont, B. Joris, J. Dusart, J. M. Frere, and J. M. Ghuysen. On the origin of bacterial resistance to penicillin : comparison of a β-lactamase and a penicillin target. Science. 231(4744):1429-31, 1986 Mar 21. 14. Irina M. and Shahriar M. Minireview :Kinship and diversification of bacterial penicillin-binding proteins and β-lactamases. Antimicrobial Agents and Chemotherapy, Jan. 1998, p. 1—17 Vol. 42, No. 1. 15. David L., Meghan E. and Peter S. Roles of low-molecular-weight penicillin-binding proteins in Bacillus subtilis spore peptidoglycan synthesis and spore properties. J. of Bacteriology, Jan. 1999, p. 126—132 Vol. 181, No. 1. 16. Michael J. and Thomas J. Direct Quantitation of the numbers of individual penicillin-binding proteins per cell in Staphylococcus aureus. J. of Bacteriology, Jan. 2002, p. 588—591 Vol. 184, No. 2. 17. Ghuysen, J. M. 1991. Serine β-lactamases and penicillin-binding proteins. Annu. Rev. Microbiol. 45:37—67. 18. Mariana G., Se´Rgio R., Hermi´Nia De L, and Alexander T. Complementation of the essential peptidoglycan transpeptidase function of penicillin-binding protein 2 (PBP2) by the drug resistance protein PBP2A in Staphylococcus aureus. J. of Bacteriololgy, Nov. 2001, p. 6525—6531 Vol. 183, No. 22. 19. Hopper, D. C., Wolfson, J. S. 1991. Fluoroquinolone antimicrobial agents. The New England of Medicine. Feeb. 384-394. 20. Hopper, D. C. 1999. Mode of action of flurorquinolones. Drugs. 58 suppl. 2:6-10. 21. Drlica, K. and X. Zhao. 1997. DNA gyrase, topoisomerase IV, and the 4-quinolones. Microbiol. Mol. Biol. Rev. 61:377—392. 22. Sugino, A., C. L. Peebles, K. N. Kruezer, and N. R. Cozzarelli. 1977. Mechanism of action of nalidixic acid: purification of Escherichia coli nalA gene product and its relationship to DNA gyrase and a novel nicking-closing enzyme. Proc. Natl. Acad. Sci. USA 74:4767—4771. 23. Palu G., Valisena S., Ciarrocchi G., Gatto B. and Palumbo M. Quinolone binding to DNA is mediated by magnesium ions. Proceedings of the National Academy of Sciences of the United States of America. 89(20):9671-5, 1992 Oct 15. 24. Albrecht, H. A., G. Beskid, K. K. Chan, J. G. Christenson, R. Cleeland, K. H. Deitcher, N. H. Georgopapadakou, D. D. Keith, D. L. Pruess, and J. Sepinwall. 1990. Cephalosporin 3’-quinolone esters with a dual mode of action. J. Med. Chem. 33:77—86. 25. Georgopapadakou, N. H., and A. Bertasso. 1993. Mechanisms of action of cephalosporin 3’-quinolone esters, carbamates, and tertiary amines in Escherichia coli. Antimicrob. Agents Chemother. 37:559—565. laboratory manual, p. 368—369. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y. 26. Geroge, M. E. 1999. Activity of newer fluoroquinolones in vitro against Gram -positive bacteria. Drugs. 58 suppl. 2:23-28. 27. Volmer, D. A., Mansoori, B., and Locke, S. J. 1997. Study of 4-quinolone antibiotics in biological samples by short-column liquid chromatography coupled with electrospray ionization tandem mass spectrometry. Anal. Chem. 69:4143-4155. 28. H. Kashiwase, T. Katsube, K. Iida, T. komai, T. Nishigaki, T. Kimura, and M. Yamashita. Investigation into the mode of action of R-91650, an arylpiperazinyl fluoroquinolone, on feline immunodeficiency virus replication inhibitory activity. Arch Virol. (2000) 145:859-869. 29. Scott J. Goebel, Gerard P. Johnson, Marion E. Perkus, Stephen W. Davis, Joseph P. Winslow, and Enzo Paoletti. 1990. The complete DNA sequence of Vaccinia virus. Virology 179, 247-266. 30. B. N. Fields., D. M. Knipe., P. M. Howley. Fields Virology, 3th . Chapter 83:Poxvirdae:The viruses and their replication. p.2367-2659. 31. Masaharu T. Poxviruses and tha origin of the eukaryotic nucleus. J. Mol. Evol. (2001) 52:419-25. 32. Erik De Clercq. Vaccinia virus inhibitors as a paradigm for the chemotherapy of poxvirus infections. Clinical Microbiololgy Reviews, Apr. 2001, p.382-397. 33 Clarissa R., A. Damaso, and S. J. Keller. Cyclosporin A inhibit vaccinia virus replication in vitro. Arch Virol. (1994) 134:303-319. 34. Sekiguchi J., and Shyman S. Novobiocin inhibits vaccinia virus replication by blocking virus assembly. Virology 1997 Aug 18:235(1):129-37. 35. Mansun L., and G. L. Smith. Antibody neutralization of the extracellular enveloped form of Vaccinia virus. Virology 280, 132-142. (2001). 36. Bair CH., Chung CS., Irina A. Vasilevskaya, and Chang W. Isolation and characterization of a Chinese hamster ovary mutant cell line with altered sensitivity to Vaccinia virus killing. J. of Virology, July 1996, p.4655-4666. 37. Anna RE., and Bernard M. Restriction of Vaccinia virus replication in CHO cells occurs at the stage of viral intermediate protein synthesis. Virology 206, 984-993 (1995). 38. David U., Douglas F., and Dennis E. H. Brefeldin A inhibits Vaccinia virus envelopment but does not prevent normal processing and localization of the putative envelopment receptor P37. Journal of General Virology (1995), 76, p.103-111. 39. Erik De Clercq, Ria Bernaerts, Y. Fulmer S., and John A. Montgomery. Broad-spectrum antiviral activity of Carbodine, the Carbocyclic analogue of Cytidine. Biochemical Pharmacology. Vol. 39. No. 2. pp.319-325. 1990. 40. Albert Balows. Current techniques — for antibiotic — susceptibility testing. Chapter Ⅱ and Ⅲ. p.6 — 25. Springfield, Illinois, U.S.A. 41. David C. G., David R. G., Karen J. LW., and Richard D. Smith. Observation of duplex DNA-drug noncovalent complexes by electrospray ionization mass spectrometry. J. Am. Chem. Soc. 1994, Vol.116, No.13, 6027-6028. 42. Katty X. W., Toshimichi Shibue, and Michael L. G. Non-covalent complexes between DNA-binding drugs and double-stranded oligodeoxynucleotides : a study by ESI ion-trap mass spectrometry. J. Am. Chem. Soc. 2000,Vol. 122, No.2, 300-307. 43. Michelle L. R., Jennifer S. B., Sean M. K., and Devinder K. Evaluation of complexation of metal-mediated DNA-binding drugs to oligonucleotides via electrospray ionization mass spectrometry. Nucleic acids research, 2001, Vol.29, No.21, e103. 44. Amit K., Jennifer L. B. and Margaret M. S. Observation of Daunomycin and Nogalamycin complexes with duplex DNA using electrospray ionization mass spectrometry. Rapid commun. mass spectrum. 1999, Vol.13, 2489-2497. 45. Timothy D. Veenstra. Electrospray ionization mass spectrometry : a promising new technique in the study of protein / DNA noncovalent complexes. Biochemical and biophysical research communications. 1999, Vol.257, 1-5. 46. Frederic Rosu, Valĕrie Gabelica, Claude Houssier and Edwin De Pauw. Determination of affinity, stoichiometry and sequence selectivity of minor groove binder complexes with double — stranded oligodeoxynucleotides by electrospray ionization mass spectrometry. Nucleic acids reseatch, 2002, Vol.30, No.16, e82. 47. S. B. Primrose, R. M. Twyman and R. W. old. Principles of gene manipulation 6th . Chapter 15:Nucleic acid probes and their applications. p.331-3. 48. Thomas M., David L. P, Christine B. P., Arithur R. H., and Peter S. Analysis of outgrowth of Bacillus subtilis spores lacking penicillin-binding protein 2a. J. of Bacteriology, Dec. 1998, p. 6493—6502 Vol. 180, No. 24. 49. Liu YT., Yeh SJ., Liao CL., Chou CF., and Shou L. Mechanism of action of chounghwamycin A. Proceedings of the National Science Council, Republic of China - Part B, Life Sciences. 13(4):262-6, 1989 Oct. 50. Hou1MH., Howard R., Gao YG., Andrew H. and Wang J. Crystal structure of actinomycin D bound to the CTG triplet repeat sequences linked to neurological diseases. 4910-4917. Nucleic Acids Research, 2002, Vol. 30 No. 22. 51. Albrecht, H. A., G. Beskid, J. G. Christenson, K. H. Deitcher, N. H. Georgopapadakou, D. D. Keith, F. M. Konzelmann, D. L. Pruess, and C. C. Wei. 1994. Dual-action cephalosporins incorporating a 39-tertiary-amine- linked quinolone. J. Med. Chem. 37:400—407. 52. Ehrhardt, A. F., and C. C. Sanders. 1992. Structure/activity studies of quinolonyl β-lactam antimicrobials (QLA) using a genetically defined panel, abstr. 771, p. 239. In Program and Abstracts of the 32nd Interscience Conference on Antimicrobial Agents and Chemotherapy. American Society for Microbiology, Washington, D.C. 53. Lotte B. Pedersen, Esther R. Angert, and Peter Setlow. Septal localization of penicillin-binding protein 1 in Bacillus subtilis. J. of Bacteriology, May 1999, p. 3201—3211 Vol. 181, No. 10. 54. Andrea Feucht, Richard A. Daniel and Jeffery Errington*. Characterization of a morphological checkpoint coupling cell-specific transcription to septation in Bacillus subtilis. Molecular Microbiology (1999) 33(5), 1015-1026. 55. Lotte B. Pedersen, Thomas Murray, David L. Popham, and Peter Setlow. Characterization of dacC, which encodes a new low-molecular-weight penicillin-binding protein in Bacillus subtilis. J. of Bacteriology, Sept. 1998, p. 4967—4973 Vol. 180, No. 18. 56. Thomas Murray, David L. Popham, and Peter Setlow. Identification and characterization of pbpA encoding Bacillus subtilis penicillin-binding protein 2A. J. of Bacteriology, May 1997, p. 3021—3029 Vol. 179, No. 9. 57. David A. Cano, Chakob Mouslim, Juan A. Ayala, Francisco Garci´A-Del Portillo,and Josef Casadesu´ Sl. Cell division inhibition in Salmonella typhimurium histidine-constitutive strains: an ftsI-like defect in the presence of wild-type penicillin-binding protein 3 Levels. J. Bacteriology, Oct. 1998, p. 5231—5234 Vol. 180, No. 19. 58. Petra Anne Levin and Richard Losick. Characterization of a cell division gene from Bacillus subtilis that is required for vegetative and sporulation septum formation. J. of bacteriology, Vol. 176, No. 5, 1994, p. 1451-1459. 59. Derrell C. M., Adam D., and David L. P. Two class A high-molecular-weight penicillin-binding proteins of Bacillus subtilis play redundant roles in sporulation. J. of Bacteriology, Oct. 2001, p. 6046—6053 Vol. 183, No. 20. 60. David A. Cano, Chakib M., Juan A. A., Francisco Garci´A-Del P., and Josep Casadesu´ S. Cell division inhibition in Salmonella typhimurium histidine-constitutive strains: an ftsI-like defect in the presence of wild-type penicillin-binding protein 3 levels. J. of Bacteriology, Oct. 1998, p. 5231—5234 Vol. 180, No. 19. 61. Lee EJ., Yeo JA., Cho CB., Lee GJ., Han SW., and Kim SK. Amine group of guanine enhances the binding of norfloxacin antibiotics to DNA. Eur. J. Biochem. 267, p.6018-6024 (2000) 62. Bailly, C., Colson, P., and Houssier, C. 1998. The orientation of norfloxacin bound to double-stranded DNA. Biochemical and Biophysical Research Communications. 243:844-848.
|