跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.85) 您好!臺灣時間:2024/12/12 10:42
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:葉桂鶯
研究生(外文):Yeh, Kuei-Ying
論文名稱:革蘭氏陽性菌細胞壁產物壁脂酸刺激初級培養中小神經膠細胞產生一氧化氮之訊息傳遞路徑
論文名稱(外文):Signal transduction pathways of NO release in primary microglial culture challenged with gram-positive bacterial constituent, lipoteichoic acid
指導教授:吳慶祥
指導教授(外文):Wu, Ching-Hsiang
學位類別:碩士
校院名稱:國防醫學院
系所名稱:生物及解剖學研究所
學門:生命科學學門
學類:生物訊息學類
論文種類:學術論文
論文出版年:2003
畢業學年度:91
語文別:中文
論文頁數:74
中文關鍵詞:小神經膠細胞壁脂酸一氧化氮
外文關鍵詞:microglialipoteichoic acidnitric oxide
相關次數:
  • 被引用被引用:0
  • 點閱點閱:248
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在過去二十年,敗血性休克經由革蘭氏陽性菌所引起的有增加的情形;的確,在所有的敗血症中有二分之一至三分之一是由革蘭氏陽性菌所造成的。研究指出一種源自金黃色葡萄球菌的革蘭氏陽性菌細胞壁產物如壁脂酸,會誘導腦脊髓炎及腦膜炎發生。壁脂酸也可以活化巨噬細胞引發一氧化氮酵素表現及增加一氧化氮的產生,然而壁脂酸是否可活化腦中小神經膠細胞目前並不清楚!
本實驗中,利用壁脂酸刺激初級培養中小神經膠細胞,發現會造成小神經膠細胞形態明顯的改變,且高濃度的壁脂酸會造成該細胞的死亡,然而低濃度的壁脂酸也會使小神經膠細胞有增殖的現象。壁脂酸刺激初級培養中小神經膠細胞也會增加其表面抗原如主要組織相容第二型抗原及細菌毒素其受體如補體第三型、CD14及清道夫受體的表現。另外,壁脂酸處理初級培養中小神經膠細胞會引發一氧化氮酵素的表現進而產生一氧化氮;而顯著的一氧化氮累積是在壁脂酸處理初級培養中小神經膠細胞二小時後便產生了。如果同時處以補體第三型、CD14或清道夫受體的抗體對一氧化氮的產生有顯著的抑制作用。壁脂酸刺激初級培養中小神經膠細胞也會使ERK、p38及JNK磷酸化。一氧化氮的產生也可以被p38或NFκB抑制劑所抑制,這顯示壁脂酸刺激初級培養中小神經膠細胞產生一氧化氮跟p38及NFκB有關。綜合這些結果證實革蘭氏陽性菌單一產物如壁脂酸可活化初級培養中小神經膠細胞產生一氧化氮,這過程是經由壁脂酸受體(如補體第三型、CD14或清道夫受體),p38及NFκB這些訊息傳遞路徑所完成的。

The incidence of septic shock caused by gram-positive bacteria has been increasing over the past two decades. Currently, between one-third and one-half of all cases of sepsis are caused by gram-positive microorganisms. Lipoteichoic acid (LTA), a cell wall component from gram-positive bacterium (Staphylococcus aureus), could also induce encephalomyelitis and meningeal inflammation. LTA enhanced the production of nitric oxide (NO) through expression of iNOS in murine macrophages. Whether microglia can also be activated by the sole cell wall product of gram-positive bacteria, LTA, is unclear!
In the present study, we found that LTA significantly changed external morphology of isolated microglia and caused cell death at high concentration. LTA of low doses also enhanced microglial proliferation. MHC class II antigens and the potential receptors for LTA such as the complement type 3 (CR3), CD14 and macrophage scavenger receptors (SR) on microglia were also augmented after LTA treatment. The latter further induced NO release and inducible nitric oxide synthase (iNOS) expression. LTA-induced NO accumulation was detected as early as at 2 h in microglial culture and significantly attenuated by the pretreatment with anti-CD14, CR3 or SR antibody. LTA activated phosphorylated p38, ERK or JNK in cultured microglia. NO production also drastically decreased by SB203580 (p38 inhibitor) or pyrrolidine dithiocarbanate (an inhibitor of nuclear factor κB), indicating that p38 and NFκB were involved in microglial NO release after LTA challenge. These results suggest that gram-positive bacterial product such as LTA can activate microglia to release NO via the signal transduction pathway involving in LTA receptors (e.g. CD14, CR3 or SR), p38 and NFκB.

目錄
頁次
目 錄 1
圖 目 錄 IV
中 文 摘 要 VI
英 文 摘 要 VII
前 言 1
壹、小神經膠細胞 1
貳、壁脂酸 5
參、細菌毒素活化免疫細胞之可能訊息傳遞路徑 5
實驗目的 10
材料與方法 11
壹、細胞培養 11
貳、亞硝酸根濃度之測定 12
參、細胞存活率之測定 13
肆、iNOS的表現 13
伍、MAPKs及IB活性的的偵測 15
陸、雙重免疫螢光染色 16
柒、統計分析 17
結果 18
壹、LTA對初級培養中小神經膠細胞形態之影響 18
貳、LTA刺激初級培養中小神經膠細胞後,其不同濃度與時程對
細胞產生NO之影響 18
參、LTA刺激初級培養中小神經膠細胞後,其不同濃度與時程對
細胞存活率之影響 19
肆、LTA可刺激初級培養中小神經膠細胞產生增殖現象 19
伍、LTA刺激初級培養中小神經膠細胞後,其表面受體及免疫分
子之變化 19
陸、LTA刺激初級培養中小神經膠細胞產生NO的可能訊息傳遞
路徑 20
柒、LTA引發初級培養中小神經膠細胞產生NO的過程中,LTA
受體及p38與NFκB的關係 21
捌、LTA誘導初級培養中小神經膠細胞iNOS之表現 22
討論 24
結論 37
參考文獻 67
圖目錄
頁次
附圖一LTA活化小神經膠細胞產生NO其訊息傳遞路徑 38
圖1A-B. Morphological changes of unchallenged and LTA-atimulated microglia in vitro. 39
圖2A-B. NO accumulation and cell viability in cultured microglia challenged with LTA. 41
圖3A-B. NO accumulation and cell viability of isolated microglia after different intervals of LTA challenge. 43
圖4. Effect of LTA on the morphology of cultured microglial nuclei
labelled with DAPI. 45
圖5. Immunoblot analysis of proliferating cell nuclear antigen in
isolated microglia stimulated with LTA. 47
圖6. Immunoreactivities of complement receptor type 3 (CR3) and
CD14 receptor on isolated microglia after LTA challenge. 49
圖7. Immunoreactivities of major histocompability complex (MHC)
class II antigen and scavenger receptor (SR) on isolated
microglia following LTA treatment. 49
圖8. Effect of anti-CD14, CR3 or SR antibody on nitrite production
on LTA-stimulated microglia. 51
圖9. Immunoblot analysis of phosphorylated ERK, p38 and JNK
in microglia stimulated with LTA or vehicle. 53
圖10. Effects of MAPK and NFκB inhibitors on the production of nitrite
in cultured microglia exposed to LTA. 55
圖11. Effects of p38 inhibitors or antibodies of LTA receptors on lipoteichoic acid-induced IκB phosphorylation in cultured
microglial cells. 57
圖12. Effects of DMSO, mouse and rabbit immunoglobulin
fractions on nitrite production in LTA-stimulated microglia. 59
圖13. iNOS immunoreactivities of microglia following LTA treatment.61
圖14. Immunoblot analysis of iNOS induction in microglia and its
inhibition by anti-LTA receptors. 63
圖15. Immunoblot analysis of iNOS induction in cultured microglia
and its inhibition by MAPK or NFκB inhibitor. 65

參考文獻
Aloisi F. (2001) Immune function of microglia. Glia 36:165-179.
Aschner MJW, Allen HK, Kimelberg RM, LoPachin, Streit WJ. (1999) Glial cells in neurotoxicity development. Annu Rev Pharmacol Toxicol 39:151-173.
Banati RB, Gehrmann J, Schubert P, Kreutzberg GW. (1993) Cytotoxicity of microglia. Glia 7:111-118.
Baroni A, Perfetto B, Ruocco E, Rossano F. (1998) Lipoteichoic acid and protein-! From Stapholococcus aureus stimulate release of hepatocyte grpwth factor (HGF) by human dermal fibrilasts. Arch Dermatol Res 290:211-214.
Becher B, Fedorowicz V, Antel JP. (1996) Regulation of CD14 expression on human adult central nervous system-derived microglia. J Neueosci Res 45:375-381.
Benveniste EN. (1995) Cytokine production. In: Neuroglia, pp700-713.
Bhat NR, Zhang P, Lee JC, Hogan EL. (1998) Extracellular signal-regulated kinase and p38 subgroups of mitogen-activated protein kinases regulated inducible nitric oxide synthase and tumor neurosis factor-α gene expression in endotoxin-stimulated primary glial cultures. J Neurosci 18:1633-1641.
Bhat NR, Fan F. (2002) Adenovirus infection induces microglia activation: involvement of mitogen-activated protein kinase pathways. Brain Res 948:93-101.
Bone RC, (1994) Gram-positive organisms and aepsis. Arch Intern Med 154: 26-34.
Braun JS, Novak R, Gao G, Murray PJ, Shenep JL. (1997) Pneumolysin, a protein toxin of Streptococcus pneumoniae, induces nitric oxide production from macrophages. Infect Immunn 67:3750-3756.
Chao CC, Hu S, Molitor TW, Shaskan EG, Peterson PK. (1992) Activated microglia mediate neuronal cell injury via a nitric oxide mechanism. J Immunol 149:2736-2741.
Cleveland MG, Gorhan JD, Murphy TL, Tuomanen E, Murphy KM. (1996) Lipoteichoic acid preparations of gram-positive bacterial induced interleukin-12 through a CD14-dependent pathway. Infect Immun 64:1906-1912.
Colasanti M, Persichini T, DiPucchio T, Greno F, Lauro GM. (1995) Human ramified microglial cells produce nitric oxide upon Escherichia coli lipopolysaccharide and tumor necrosis factor alpha stimulation. Neurosci Lett 200:144-146.
Coraci I, husemann J, Berman JW, Hulette C, Dufour JH, Campanella GK, Luster AD, Silverstein SC, EI Khoury J. (2002) CD36, a class B scavenger receptor, is expressed on microglia in Alzheimer's disease brains and can mediate production of reactive oxygen species in response to beta-amyloid fibrils. Am J Pathol 160:101-112.
Cotter RL, Burke WJ, Thomas VS, Potter JF, Zheng J, Gendelman HE. (1999) Insights into the neurogenerative process of Alzheimer’s disease: a role for mononuclear phagocyte- associated inflammation and neurotoxicity. J Leukoc Biol 65:416-427.
Cuenda A, Cohen P, Buee-Scherrer V, Goedert M. (1997) Activation of stress-activated protein kinase-3 (SAPK3) by cytokines and cellular stresses is mediated via SAPKK3 (MKK6); comparsion of the specificities of SAPK3 and SAPK2 (RK/p38). EMBO J 16:295-305.
Cuzzola M, Mancuso G, Beninati C, Biondo C, Hunolstein CV, Orefici G, Espevik T, Flo TH. (2000) Human moncyte receptors involved in tumor necrosis factor responses to group B streptococcal products. Infect Immun 68:994-998.
De Kimpe SJ, Kengatharan M, Thiemermann C, Vane JR. (1995) The cell wall components peptidoglycan and lipoteichoic acid from Staphylococcus aureus act in synergy to cause shock and multiple orgain failure. Proc. Natl. Acad. Sci. USA 92:10359-10363.
Ding M, Pierre BA St, Parkinson JF, Medberry P, Wong JL, Rogers NE, Ignarro LJ, Merrill JE. (1997) Inducible nitric-oxide synthase and nitric oxide production in human fetal astrocytes and microglia. J Biol Chem 272:11327-11335.
Ehlers MR. (2000) CR3: a general-purpose adhesion-recognition receptor essential for innate immunity. Microbes Infect 2:289-294.
Esen M, Schreiner M, Jendrossek V, Lang F, Fassbender K, Grassme H, Gulbin E. (2001) Mechanisms of Staphylococcus aureus induced apoptosis of human endothelical cells. Apoptosis 6:431-439.
Febbraio M, Abumrad NA, Hajjar DP, Silverstein RL.(2001) CD36: a class B scavenger receptor involved in angiogenesis, atherosclerosis, inflammation, and lipid metabolism. J Clin Invest 108:785-791.
Fettucciari K, Fetriconi I, Bartoli A, Rossi R, Marconi P. (2003) Involvement of mitogen-activated protein kinases in group B Streptococcus-induced macrophage apoptosis. Pharmacol Res 47:355-362
Fiebich BL, Butcher RD, Gebicke-Haerter PJ. (1998) Protein kinase C-mediated regulation of inducible nitric oxide synthase expression in cultured micriglial cells. J Neuroimmunol 92:170-178.
Fiebich BL, Lieb K, Engels S, Heinrich M. (2002) Inhibition of LPS-induced p42/44 MAP kinase activation and iNOS/NO synthesis by parthenolide in rat primary microglial cells. J Neuroimmunol 132:18-24.
Gehrmann J, Banati RB, Kreutzberg GW. (1993) Microglia in the immune surveillance of the brain: Human microglia constitutively express HLA-DR molecules. J Neuroimmunol 48:307-317.
Gehrmann J, Matsumoto Y, Kreutzberg JW. (1995) Microglia: intrinsic immuneffector cell of the brain. Brain Res Rev 20:269-287.
Giulian D. (1993) Reactive glia as rival in regulating neuronal survival. Glia 7:102-110.
Ginsburg I. (2002) Pole of lipoteichoic acid in infection and inflammation. Lancet Infect Dis 3:171-179.
Golde S, Chandran S, Brown G, Compston A. (2002) Different pathways for iNOS-mediated toxicity in vitro dependent on neuronal maturation and NMDA receptor expression. J Neurochem 82:269-282.
Goodrum KJ, McCormick LL, Schneider B. (1994) Group B streptococcus-induced nitric oxide production in murine macrophages is CR3 (CD11b/Cd18) dependent. Infect Immun 62:3102-3107.
Guido S, Sebastian J. (1999) The role of microglia and macrophages in the pathophysiology of the CNS. Prog Neurobiol 58:233-247.
Guna M, mackman N. (2001) LPS induction of gene expression in human monocytes. Cell Signal 13:85-94.
Hale KK, Trollinger D, Rihanek M, Manthey CL. (1999) Differential expression and activation of p38 mitogen-activated protein kinase alpha, beta, gamma, and delta in flammatory cell lineages. J Immunol 162:4246-4252.
Han IO, Kim KW, Ryu JH, Kim WK. (2002) p38 mitogen-activated protein kinase mediates lipopolysaccharide, not interferon-γ, induced inducible nitric oxide synthase expression in murine BV2 microglial cells. Neurosci Lett 325:9-12.
Hanks SK, Hunter T. (1995) Protein kinase 6. The eukaryotic protein kinase superfamily: kinase (catalytic) domain structure and classification. FASEB J 9:576-596.
Harper SJ, LoGrasso P. (2001) Signalling for survival and death in neurones: the role of stress-activated kinases, JNK and p38. Cell Signalling 13:299-310.
Hattor Y, Kasai K, Akimoto K, Thiemermann C. (1997) Induction of no synthesis by lipoteichoic acid from staphylococcus aureus in J774 macrophages: involvement of a CD14-dependent pathway. Biolchem Biophys Res Commun 233:375-379.
Hausler KG, Prinz M, Nolte C, Weber JR, Schumann RR, Kettenmann H, Hanisch UK. (2002) Interferon-γdifferentially modulates the release of cytokines and chemokines in lipopolysaccharide-and pneumococcal cekk wall-stimulated mouse microglia and macrophages. Eur J Neurosci 16:2113-2122.
Hayes Gm, Woodroofe MN, Cuzner ML. (1987) Microglia are the major cell type expressing MHC class II in human white matter. J Neurol Sci 80:25-37.
Hermann C, Spreitzer I, Schroder NWJ, Morath S, Lehner MD, Fischer W, Schutt C, Schumann RR, Hartunh T. (2002) Cytokine induced by purified lipoteivhoic acids from various bacterial species-role of LBP, sCD14, CD14 and failure to induced IL-12 and subsequent IFN-γ release. Eur J Immunol 32:541-551.
Hermann D, Barras C, Severin A, Glauser MP, Tomasz. (1994) Gram-positive cell walls stimulate synthesis of tumor neurosis factor-α and interleukin-6 by human monocytes. Infect Immun 62:2715-2721.
Hidding U, Mielke K, Waetzig V, Brecht S, Hanisch U. (2002) The c-Jun N-terminal kinases in cerebral microglia: immunological function in the brain. Biochem Pharmacol 64:781-788.
Husemann J, Loike JD, Kodama T, Sliverstein SC. (2001) Scavenger receptor class B type I (SR-BI) mediates adhesion of neonatal murine microglia to fibrillar beta-amyloid. J Neuroimmunol 114:142-150.
Ingalls RR, Golenbock DT. (1995) CD11c/CD18, a transmembrane signaling receptor for lipopolysaccharide. J Exp Med 181:1473-1479
Jeohn GH, Cooper CL, Jang KJ, Liu B, Lee DS, Kim HC, Hong JS. (2002) Go6976 inhibits LPS-induced microglial INFα release by suppressing p38 MAP kinase activation. Neuroscience 114:689-697.
Jeon YJ, Han SB, Ahn KS, Kim HM. (2000) Differential activation of murine macrophages by angelan and LPS. Immunopharmacology 49:275-284.
Kopec KK, Carroll RT. (2000) Phagocytosis is regulatted by nitric oxide in murine microglia. Nitric Oxide 4:103-111.
Kengatharan KM, De Kimpe SJ, Thiemermann C. (1996) Analysis of the signal transduction in the induction of nitric oxide synthase by lipoteichoic acid in macrophages. Br J Pharmacol 117:1163-1170.
Kengatharan KM, De Kimpe SJ, Robson C, Foster SJ, Thiemermann C. (1998) Mechanism of gram-positine shock: indentification of peptidoglycan and lipoteichoic acid moieties essential in the induction of nitric oxide synthase shock, and multiple organ failure. J Exp Med 88:305-315.
Kim YS, Tauber MG. (1996) Neurotoxicity of glia activated by gram-positive bacterial products depends on nitric oxide production. Infect Immun 64:3148-3153.
Kim H, Shin J, Han PL, Choi EJ. (1997) Nitric oxide modulates the c-Jun N-terminal kinase/stress-activated protein kinase through activating c-Jun N-terminal kinase kinase. Biochemistry 36:13677-13681.
Kirikae T, Kodama T, Kirikae F, Suzuki H. (1998) The role of scavnnger receptors in LPS-induced macrophage activation. Prog Clin Biol Res 397:97-105.
Kirschning CJ, Wesche H, Merrill AT, Rothe M. (1998) Human toll like receptor 2 confers responsiveness to bacterial lipopolysaccharide. J Exp Med 188:2091-2097.
Kloss CUA, Bohatschek M, Kreutzberg GW, Raivich G. (2001) Effect of lipopolysaccharide on the morphology and intergin immunoreactivity of ramified microglia in the mouse brain and in cell culture. Exp Neurol 168:32-46.
Koistnaho M, Koistnaho J. (2002) Role of p38 and p44/42 mitogen-activated protein kinases in microglia. Glia 40:175-183.
Kreutzberg GW. (1996) Microglia: a sensor for pathological event in the CNS. Trends Neurosci 19: 312-318.
Kruse V, Dago L, Meyer M, Drejer J Gronborg M. (2002) NS-417, a novel compound with neurotrophic-like effects. Neurochem Res 27:107-11.
Lannuzel A, Barnier JV, Hery C, Huynh VT, Guibert B, Vincent JD, Tardieu M. (1997) Human immunodeficiency virus type 1 and its coat protein gp 120 induce apoptosis and activate JNK and ERK mitogen-activated protein kinases in human neurons. Ann Neurol 42:847-856.
Lawson LJ, Perry VH, Gordon S. (1992) Turnover of resident microglia in the normal adult mouse brain. Neuroscience 48:405-415.
Lee MS, Yen CY, Ueng SW, Shih CH, Chao CC. (2001) Signal transduction pathways and apoptosis in bacterial infected chondrocytes. J Orthop Res 19:696-702.
Ling EA. (1979) Transformation of monocytes into amoeboid microglia in the corpus callosum of postnatal rats, as shown by labelling monocytes by carbon particles. J. Anat 128:847-858.
Ling EA, Kaur LC, Yick TY, Wong WC. (1992) Immunocytochemical localization of CR3 complement receptors with OX-42 in amoeboid microglia in postnatal rats. Anat Embryol 182:481-486.
Ling EA, Wong WC. (1993) The origin and nature of ramified and amoeboid microglia: a historical review and culture concepts. Glia 7:9-18.
Liva SM, kahn MA, Dopp JM, de Vellis J. (1999) Signal trandduction pathways induced by GM-CSF in microglia: significance in the control of proliferation. Glia 26:344-352.
Marshall CJ. (1994) MAP kinase kinase, MAP kinase and MAP kinase. Curr Opin Genet Dev 4:82-89.
McGeer PL, Akiyama H, Itagaki S. (1988) Major histocompatibility complex antigen expression on rat microglia following epidural kainic acid lesions. J Neurosci Res 20:147-57.
McGerr PL, Kawamata T, Walker DG, Akiyma H, Tooyama I, McGeer EG. (1993) Microglia in degenerative neurological disease. Glia 7:84-92.
Matsuno R, Aramaki Y, Arima H, Tsuchita S. (1997) Scavenger receptors may regulate nitric oxide production from macrophages stimulated by LPS. Biochem Biophys Res Commun 237:601-605.
Monier RM, Orman K, Meals EA, English BK. (2002) Differential effects of p38 and extracellular signal-regulated kinase mitogen-activated protein kinase inhibitors on inducible nitric oxide synthase and tumor necrosis factor production in murine macrophages stimulated with streptococcus pneumoniae. J Infect Dis 185:921-926.
Moore KJ, EI Khoury J, Medeiros LA, Terada K, Geula C, Luster AD, Freeman MW. (2002) CD36-initiated signaling cascade mediates inflammatory effects of β —amyloid. J Biol Chem 277:47373-47379.
Morrison DC, Lei MG, Kirikae T, Chen TY. (1993) Endotoxin receptors on mammalian cells. Immunobiology 187:212-216.
Nadeau S, Rivest S. (2000) Role of microglia-derived tumor necrosis factor in mediating CD14 transcription and nuclear factor kappa B activity in the brain during endotoxemia. J Neurosci 20:3456-3468.
Nogare AR. (1991) Southwestern internal medicine conference: septic shock. Am J Sci 302:50-65.
Nolan B, Duffy A, Paquin L, DeM, Collette H, Graziano CM, Bankey P. (1999) Mitogen-activated protein kinases signal inhibition of apoptosis in lipolysaccharide stimulated neutrophils. Surgery 126:406-412.
Oberholzer A, Oberholzer C, Moldawer LL. (2001) Sepsis syndrome: understanding the role of innate and acquyred immunity. Shock 16:83-96.
Parrillo JE. (1993) Pathogenetic mechanisms of setic shock. N Engl J Med 328:1471-1477.
Paresce DM, Ghosh RN, Maxfield FR. (1996) Microglial cells internalize aggregates of the Alzheimer's disease amyloid beta-protein via a scavenger receptor. Neuron 17:553-565
Pinteaux E, Parker LC, Rothwell NJ, Luheshi GN. (2002) Expression of interleukin-1 receptors and their role in interleukin-1 actions in murine microglial cells. J Neurochem 83:754-763.
Pyo H, Jou I, Jung S, Hong S, Joe EH. (1998) Mitogen activated protein kinases activated by lipopolysaccharide and beta-amyloid in cultured rat microglia. Neuroreport 9:871-874.
Raivich G, Jones LL, wemer A, Mluethmann H, Doetschmann T, Kreutzberg GW. (1999) Molecular signals for glial activation: pro- and anti-inflammatory cytokines in the injured brain. Acta Neurochir Suppl 73:21-30.
Rio-Hortega, del P. (1932) Microglia. In “Cytology and Cellular Pathology of the Nervous System”(W.Penfield, ed). Vol.2.Hoeber, New York, pp481-534.
Rubel C, Milianide Marval P, Vermeulen M, Isturiz MA, Palermo MS. (1999) Lipopolysaccharide enhances FcγR-dependent function in vivo through CD11b/CD18 up-regulation. Immunology 97:429-437.
Ryu J, Pyo H, Jou I, Joe E. (2000) Thrombin induces NO release from cultured rat microglia via protein kinase C, mitogen-activated protein kinase, and NFκB. J Biol Chem 275:29955-29959.
Streit WJ, Graeber MB, Kreutzberg GW. (1988) Functinal plasticity of microglia. Glial 15:301-307.
Stollg G, Jander S. (1999) The role of microglia and macrophages in the pathophysiology of the CNS. Prog Neurobiol 58:233-247.
Strohmeyer R, Rogers J. (2001) Molecular and cellular mediators of Alzheimer’s disease inflammation. J Alz Dis 3:131-157.
Sudo S, Tanaka J, Toku K, Desaki J, Matsuda S, Arai T, Sakanaka M, Maeda N. (1998) Neurons induce the activation of microglial cells in vitro. Exp Neurology 154:499-510.
Sugiyama A, Arakaki R, Ohnishi T, Arakaki N, Daikuhara Y, Takada H. (1996) Lipoteichoic acid and interleukin 1 stimulate synergistically production of hepatocyte growth factor (scatter factor) in human gingival fibroblasts in culture. Infect Immun 64:1426-1431.
Sunohara JR, Ridgway ND, Cook HW, Byers DM. (2001) Regulation of MARCKS and MARCKS-related protein expression in BV2 microglial cells in response to lipopolysaccharide. J Neurochem 78:664-672.
Thiemermann C. (2002) Interactions between lipoteichoic acid and peptidoglycan from Staphlococcus aureus: a structural and function analysis. Microbes Infect 4:927-935.
Tsukahara Y, Morisaki T, Horita Y, Torisu M, Tanaka M. (1998) Expression of inducible nitric oxide synthase in circulating neutrophils of the systemic inflammatory response syndrome and septic patients. World J Signal 9:337-351.
Ulevitch RJ, Tobias PS. (1995) Receptor-dependent mechanisms of cell stimulation by bacterial endotoxin. Ann Rev Immunol 13:437-457.
Ulvestad E, Williams K, Mork S, Antel J, Nyland H. (1994) phenotypic differences between human monocytes/macrophages and microglial cells studied in situ and in vitro. J Neuropathol Exp Neurol 53:492-501.
Watters JJ, Sommer JA, Pfeiffer ZA, Prabhu U. Guerra AN, Bertics PJ. (2002) A differential role of the mitogen-activated protein kinases in lipopolysaccharide signaling. J Biol Chem 277:9077-9082.
Wekerle H, Neumann H, Boucraut J, Hahnel C, Misgeld T. (1996) Neuronal control of MHC class II inducibility in rat astrocytes and microglia. Eur J Neurosci 8:2582-90
Wheeler AP, Bernard GR. (1999) treating patients with severe sepsis. N Engl J Med 340:207-214.
Wong ML, Retton V, al-Shekhlee A. (1996) Inductible nitric oxide synthase gene expression in the brain during systemic inflammation. Nat Med 2:581-584.
Wright SD, Ramos RA, Tobias PS, Ulevitch RJ, mathison JC. (1990) CD14, a receptor for complexes of lipopolysaccharide (LPS) and LPS binding protein. Science 249:1431-1433.
Wright SD, Levin SM, Jong MTC, Chad Z, Kabbash LG. (1989) CR3 (CD11b/CD18) expresses one binding site for Arg-Gly-Asp- containing peptides and a second site for bacterial lipopolysaccharide. J Exp Med 169:175-183.
Wu CH, Huang CM, Lin CH, Ho YS, Chen CM, Lee HM. (2002) Advanced glycosylation end products induce NFκB dependent iNOS expression in RAW 264.7 cells. Mol Cell Endocrinol 194:9-17.
You L, Kruse FE, Bacber S, Scbmitz ML. (2002) Lipoteichoic acid selectively induces the ERK signaling pathways in the cornea. Invest Ophthalmol Vis Sci 43:2272-2277.
Xie Q, Kashiwabara Y, Nathan C. (1994) Role of transcription factor NF-kappa B/Rel in induction of nitric oxide synthase. J Biol Chem 269: 4705-4708.
Xu J, Ling EA. (1994) Upregulation and induction of surface antigens with special reference to MHC class II expression in microglia in postnatal rat brain following intravenous or intraperitoneal injection of lipopolysaccharide. J Anat 184:285-296.
Zhang X, Laubach VE, Alley EW, Edwards KA, Sherman PA, Russell SW, Murphy WJ. (1996) Transcriptional basis for hyporesponsiveness of the human inducible nitric oxide synthase gene to lipopolysaccharide/interferon-γ. J Leukocyte Biol 59:575-585.
Zhang P, Hogan EL, Bhat NR. (1998) Activation of JNK/SAPK in primary glial cultures: II. Differential activation of kinase isoforms corresponds to their differential expression. Neurochem Res 23:219-225.
Ziegler-Heitbrock HW, Ulevitch RJ. (1993) CD14: cell surface receptor and differentiation marker. Immunol Today 14:121-125.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top