跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.85) 您好!臺灣時間:2024/12/12 13:30
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:鄭清山
研究生(外文):Ching-Shan Jeng
論文名稱:烷化生質柴油對柴油引擎影響之研究
論文名稱(外文):A Study for The Assessment of Alkylating Biodiesel on Heavy-Duty Diesel Engines
指導教授:樊國恕樊國恕引用關係
指導教授(外文):Kuo-Shuh Fan
學位類別:碩士
校院名稱:國立高雄第一科技大學
系所名稱:環境與安全衛生工程所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2003
畢業學年度:91
語文別:中文
論文頁數:154
中文關鍵詞:生質柴油替代燃料烷化生質柴油
外文關鍵詞:BiodieselAlkylating BiodieselAlternative fuels
相關次數:
  • 被引用被引用:40
  • 點閱點閱:353
  • 評分評分:
  • 下載下載:55
  • 收藏至我的研究室書目清單書目收藏:1
替代燃料 (Alternative Fuels) 之研發、推廣與使用,對改善空氣污染,維護環境品質與國民健康有其實質裨益。其中生質柴油具相當潛力為世界各國極力推廣,惟純生質柴油有冷天使用、物質相容性、氮氧化物排放增高及價格過高等問題,我國尚有原料缺乏、法令標準及通路等問題需克服,致無實質之推廣運用。
本研究即針對生質柴油與烷類化合而成之烷化生質柴油進行研究,此一油品可改善生質柴油之部份缺失,如油耗、氮氧化物排放及價格等,本研究係以含5%、20%、50%生質柴油之烷化生質柴油及純生質柴油使用於柴油引擎,進行油品特性分析、引擎性能與污染特性測試,並進行成本推估。
研究結果顯示含5%生質柴油之烷化生質柴油具有最佳污染減量效果,其減量效率分別為THC:-29.0%,CO:-25.5%,NOx:-8.9%,PM:-25.0%,SOx:-100%及黑煙:-19.5%。另油品分析顯示,該烷化生質柴油具有高十六烷值使用時應有較容易啟動及降低噪音的效果、無硫含量使用時不會有硫份排放、無芳香烴含量使用時將可改善柴油的多環芳香烴(PAHs)污染排放,且潤滑性非常的良好,遠優於柴油規範的要求之優點,而缺點為流動點高,使用添加劑即可改善流動點過高問題。
在引擎性能方面,具有與柴油接近之油耗特性,馬力及扭力損失與市售柴油比較在7%至8%之間。
在成本方面,初期成本較柴油價格高5元/公升左右,年產量12萬公秉即達經濟規模與柴油價格近似,無需補貼即具競爭力,可行性極高。
建議政府由空氣品質較差之高屏空品區先推廣,高高屏地區如有25%柴油被含5%生質柴油之烷化生質柴油替代,即可達經濟規模,則高速公路高雄市路段之PM最大日平均值約可降低1.3μg/M3,NOx最大小時平均值約可降低11ppb。
Alternative fuels, through investigation, promotion and application, are recognized as beneficial to improvement of air pollution, environment friendly and human health. The potential of the use of biodiesel are highly recommended , however the barrier lies beyond used in cold weather, material compatibility, mitigating NOx increase and cost-effectiveness, for the commercial application. Some specific problem also lies on biofuel deficiency, regulatory context and fuel distribution and supply in Taiwan, which had constrained the progress of biodiesel use.
This project aimed at the alkylating biodiesel , which combined with biodiesel and alkane, for the performance test. The newly combined biodiesel is expected to be lower fuel consumption, lower NOx emission and more competitive in price as compared with conventional biodiesel. Heavy-duty diesel engine test had been performed in different composition of 5%, 20%, 50% alkylating biodiesel with pure biodiesel, to analysis the fuel properties, engine performance and emission characteristics, and also the cost-effectiveness.
The emission characteristics analysis showed the best reduction effect with the 5% alkylating biodiesel sample, reduction rate had been tested at —29.0% in THC, -25.5% in carbon dioxide, -8.9% in NOx, -25.0% in particulate matters, -100% in sulfur oxides and -19.5% in smoke. The fuel property analysis results suggested that high cetane number in alkylating biodiesel will lead to easy-started and lower noise for diesel engine. Zero sulfur and aromatic hydrocarbons content will benefit with zero sulfur oxide and PAH emission. The test result also showed good lubrication property, and surpasses far beyond the diesel performance standard. The weakness of biodiesel is the high pour point, which can be modified via an additive used.
About engine performance, bio-diesel has the same fuel-consumption compared with conventional diesel. The horsepower and torsion lose of the bio-diesel are 7-8 % lower than conventional diesel.
Regarding of cost-effectiveness analysis, although bio-diesel cost more than conventional diesel about 5 N.T. dollars per liter at the initial stage, however, balance will meet if production of the bio-diesel reaches at 120,000 KL per year. At the time of commercial production of the bio-diesel take into practice, it would be highly competitiveness without enforcement by the agent, and it’s also technological feasible.
Promotion of bio-diesel had also suggested to be implemented in Kao-Ping Air Basin as an air pollution control measure. Calculated through air quality modeling, if 25% of conventional diesel had been substituted for 5% content bio-diesel in the Kao-Ping Air Basin, the reduction of the air pollution concentration along the freeway in Kaohsiung city will be 1.3μg/M3 for PM maximum daily average and 11 ppb for NOx maximum hourly average annually.
中文摘要 i
英文摘要 ii
誌謝 iv
目錄 vi
表目錄 ix
圖目錄 x
壹、緒論
一、 研究背景 ------------------------------------------------------- 1
二、 研究動機 ------------------------------------------------------- 2
三、 研究目的 ------------------------------------------------------- 4
貳、文獻回顧
一、 我國生質能發展現況 ------------------------------------------------- 5
二、 柴油車污染 --------------------------------------------------- 6
三、 油品物、化特性與引擎性能及排煙關係 --------------------------- 9
四、生質柴油 --------------------------------------- 15
(一)生質柴油的製造 --------------------------------------- 15
(二)生質柴油的特性 --------------------------------------- 19
(三)生質柴油的發展 --------------------------------------- 21
(四) 發展困境及因應措施 --------------------------------------- 24
參、研究設備及方法
一、研究方法 ----------------------------------------------- 28
(一) 研究流程 --------------------------------------------------- 28
(二) 試驗方法 --------------------------------------------------- 31
1. 引擎性能、油耗及污染排放測試 ---------------------------- 31
2. 油品物、化特性試驗 ------------------------------------ 31
3.各期垃圾車煙度檢測 ------------------------------------ 32
(三) 空氣品質減量效益評估模式 ----------------------------------- 32
二、實驗設備 ----------------------------------------------- 32
(一)引擎測功計及排氣稀釋道 --------------------------------------- 33
(二)氣狀污染物取樣及分析系統 --------------------------------------- 34
(三)實驗用柴油引擎 ---------------------------------------- 36
(四) 煙度檢測之車體動力計及車輛 -------------------------------- 36
三、實驗用油品 ----------------------------------------------- 37
(一) 生質柴油 ----------------------------------------------- 38
(二) 烷化物 ----------------------------------------------- 38
第肆章 結果與討論
一、油品物、化性分析結果 ------------------------------------------ 39
(一) 密度及熱值 ------------------------------------------ 39
(二) 動力黏度 ------------------------------------------ 39
(三) 燃料十六烷值 ------------------------------------------ 42
(四) 燃料潤滑性 ------------------------------------------ 42
(五) 流動點 ------------------------------------------ 42
(六) 含硫量 ------------------------------------------ 42
(七) 多環芳香烴與總芳香烴 ------------------------------------------ 45
二、引擎性能測試結果 ------------------------------------------ 48
三、引擎污染排放測試 ------------------------------------------ 53
(一) 暫態循環污染檢測 ------------------------------------------ 53
(二) 引擎黑煙排放測試 ------------------------------------------ 58
(三) 各期垃圾車煙度量測 ------------------------------------------ 58
四、成本分析 ------------------------------------------ 63
五、效益評估 ----------------------------------------- 65
(一) 排放量推估說明 ----------------------------------------- 65
(二) 烷化生質柴油之需求分析 ----------------------------------------- 67
(三) 空氣品質改善評估 ----------------------------------------- 68
(四) 單位成本減量估算 ----------------------------------------- 73
(五) 生產油脂作物面積估算 ----------------------------------------- 73
第伍章 結論與建議
一、結論 --------------------------------------------------------- 74
二、建議 --------------------------------------------------------- 75
三、未來研究方向 -------------------------------------------------------- 77
參考文獻 ----------------------------------------------------------- 78
附錄一 引擎性能測試結果
附錄二 動力計煙度測試結果
附錄三 高雄市柴油車排放量及烷化生質柴油取代25%高柴後之削減量分布
1.林成原、馬小康、洪哲文,柴油車黑煙排放成因及診斷改善技術之研究,國立台灣海洋大學輪機工程系,2003.
2.李俊德、李文智,高雄市柴油車排放廢氣中多環芳香烴化合物之調查研究, 國立成功大學環境工程學系,1999.
3.Paramins,”Winter Diesel Fuel Survey”,1994
4.高雄市政府環境保護局,高雄市91-92柴油車管制計畫,2003.
5.經濟部能源發展委員會,再生能源發展方案, 2003.
6.何永盛、李文智,1997,油品品質對車輛排放污染物之影響,國立成功大學環境工程學系.
7.李俊璋, 1982,台北市空氣中懸浮微粒物理化學分析研究, 國立成功大學環境工程學系.
8.米孝萱, 1998,移動性污染源排放多環芳香烴化合物之特徵,博士論文.
9.F.T.Jeg,et al,”The Comparison on the particulate Measurement with TSP,PM-10 and Beta-Gauge Methods in Different Environmenta.”,1STSymposium on Pollution and Health Effects of Aerosols,1992.
10.MacKinven Robert and Martial Hublin, "European Programme on Emissions , Fuels and Engine Technologies (EPEFE)- Objectives and Design", SAE 961065,1996.
11.David J. Rickeard, Robert Bonetto, Meinrad Signer, ”European Programme on emissions, Fuels and engine technologies (EPEFE) — Comparison of Light and Heavy Duty Diesel Studies”, SAE 961075, 1996.
12.K. Owen and T. Coley, Published by SAE, 1995, Automative Fuels Handbook。
13.Christopher A. Sharp,Southwest Research Institute,” Exhaust Emissions and Performance of Diesel Engines with Biodiesel Fuels”, www.biodiesel.org/resources /reportsdatabase/reports/ gen/gen -065.pdf
14.陳介武,”生化柴油發展與趨勢”, 2000,http://www.soybean.org.tw/tech6-3.htm.
15.K. Shaine Tyson,” Biodiesel Handling and Use Guidelines” ,2001
16.Proceedings of the 9th Annual Fuels & Lubes Asia Conference and Exhibition, 21-24 January 2003, Singapore
17.Laforgia. D. and Ardito V., “ Biodiesel Fueled IDI Engines: Performance, Emissions and Heat Release investigation”, Fuel and Energy Abstracts, Vol. 36, Issue:4, July, 1995, pp.269.
18.LJ Clarke , EH Crawshaw and LC Lilley, “Fatty Acid Methyl Esters (FAMEs) as Diesel Blend Components, The 9th Proceedings of the Annual Fuels & Lubes Asia Conference and Exhibition, 2003, Singapore.
19.Lepperhoff G., Houben M., Cartus T., and Breuer Ch., “ Transient Test Benches for the Development of Fuels and Lubricants Reducing Emissions and Fuel Consumption.”, 11th European Automotive Symposium AGELFI, Sorrento, 1992.
20.Abbass M.K., Shen Y., Abdelhalim S.M., Andrews G.E., and Williams P.T., “ Comparison of Methods for the Determination of the SOF of Diesel Particulates and Development of a Rapid TGA Method for the Estimation of the Unburnt Fuel and Lubricating Oil Fraction.”, IMechE, Second International Seminar on Diesel Fuel Injection Systems, London, 14-15 April, 1992.
21.工業技術研究院能源與資源研究所,2001,台灣地區生質柴油應用評估.
22.林奇聰,”德國生質柴油經濟效益經驗及能源策略的發展”,能源季刊,1997.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top