跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.173) 您好!臺灣時間:2024/12/07 12:19
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:李協衛
研究生(外文):Hsieh-Wei Li
論文名稱:非遞迴式一維雙正交離散小波轉換之VLSI硬體實現
論文名稱(外文):A VLSI Implementation for Non-Recursive 1D Biorthogonal Discrete Wavelet Transform
指導教授:洪金車
指導教授(外文):King-Chu Hung
學位類別:碩士
校院名稱:國立高雄第一科技大學
系所名稱:電腦與通訊工程所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2003
畢業學年度:91
語文別:中文
論文頁數:108
中文關鍵詞:雙正交小波轉換
外文關鍵詞:BiorthogonalWavelet Transform
相關次數:
  • 被引用被引用:0
  • 點閱點閱:191
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:2
由於具抗雜訊及可呈現區域性變動量之特性,低解析度的小波轉換係數遂為
圖形辨識應用中極欲取得之特徵參數。然而傳統小波轉換的運算模式係建立在金
字塔型遞迴演算法下,此模式在連續處理時存在先天性資料衝突的問題,在硬體
實現時,需以時脈交錯方式解決,不僅電路複雜且需耗時計算無用之高解析度係
數。為克服此問題,我們摒棄傳統的遞迴式運算架構,另外開發一非遞迴式小波
轉換法。然而非遞迴式演算法亦存在一先天性嚴重問題,即濾波器係數會隨著分
解階數的增加而呈級數成長。為克服此問題,我們針對非遞迴式小波轉換提出一
區段累加演算法(SAA),以克服濾波器係數級數成長的問題。SAA 係以低於原始
濾波器長度之乘法及加法器執行平行階次分解處理,可直接求得任一解析度係
數,並可提供最短的資料寬度及資料源共享機制,以達進一步的電路精簡目的,
適合於超音波連續乳房腫瘤切面影像即時辨識系統之應用。
With the significant properties of noise resistance and local variance extractability, the
wavelet transform coefficients of coarser level are desired for the applications of pattern
recognition. However, all traditional VLSI architectures of the wavelet transform based on
the recursive pyramid algorithm require interleaving technique to solve the data confliction
problem happening at the entry. This will increase circuit complexity and time latency to
compute those useless wavelet transform coefficients in finer levels. Instead, we present a
non-recursive algorithm of the 1-D BDWT to solve this problem. The main difficulty of
the non-recursive 1-D BDWT is that the filter coefficients will be growing progressively as
k is increased. Based on the AOCA process, an efficient process called segment
accumulation algorithm (SAA) is proposed to overcome the filter growing problem. With
the property of using the same original data for all stages, data sharing technique can be
applied in the parallel processing scheme of the SAA for circuit complexity reduction. The
SAA provides four fundamental VLSI architectures with the advantages of requiring no
multiplex, less multiplier, adder, and non-interleaving process. Moreover, the latency of the
architecture is independent of the decomposition levels and can be very short.
第一章緒論……………………………………………………………..…………1
1-1 研究動機……………………………………………………………………1
1-2 硬體架構回顧………………………………………………………………4
1-3 論文內容概述………………………………………………………………5
第二章一維雙正交離散小波轉換之理論…………..……………………………6
2-1 一維離散週期性小波轉換理論………………..……………………………6
2-2 一維雙正交離散小波轉換理論……………………………………………10
第三章基於區段累加演算法之非遞迴式一維雙正交離散小波轉換…………17
3-1 非遞迴式一維雙正交離散小波轉換演算法………………………………17
3-2 邊界資料處理方式一………………………………………………………28
3-2-1 邊界資料處理方式一的非遞迴式1-D BDWT 轉換係數……………28
3-2-2 邊界資料處理方式一的額外取樣資料………………………………30
3-3 邊界資料處理方式二………………………………………………………35
3-3-1 非遞迴式1-D BDWT 係數和遞迴式1-D BDWT 係數的差異…...…35
3-3-2 後邊界資料係數的濾波器係數……………………..…………..……39
3-3-3 前邊界資料係數的濾波器係數………………………..………..……43
3-3-4 邊界資料處理方式二的軟體模擬結果……………..…………..……47
第四章非遞迴式1-D BDWT 之VLSI 硬體架構……………………….……….49
4-1 邊界資料處理方式一的資料結構…………………………………………49
4-2 邊界資料處理方式一的硬體架構圖………………………………………56
4-3 邊界資料處理方式二的資料結構…………………………………………60
4-4 邊界資料處理方式二的硬體架構圖………………………………………63
第五章非遞迴式一維雙正交離散小波轉換之電路模擬………………..……68
5-1 邊界資料處理方式一之電路模擬…………………………..………..……68
5-2 邊界資料處理方式二之電路模擬…………………………..………..……76
第六章結論………………………………………………………………..……95
Reference…………………………………………………………………………96
[1] S. Mallat, A wavelet tour of signal processing, Academic Press, Harcourt Science
and Technology, 1999.
[2] G. Beylkin, R. R. Coifman and V. Rokhlin, Wavelets in numerical analysis and
their application, New York: Jones and Bartlett, pp.181-210, 1992.
[3] X. Li, B. Hu, X. Ling, and X. Zeng, “A wavelet-balance approach for steady-state
analysis of nonlinear circuits,” IEEE Trans. Circuits and Systems-I: Fundamental
Theory and Applications, vol. 49, pp.689-694, 2002.
[4] G. C. H. Chuang and C. C. J. Kuo, “Wavelet descriptor of planar curves: Theory
and applications,” IEEE Trans. Image Processing, vol. 5, pp.56-70, Jan. 1996.
[5] K. C. Hung, “The generalized uniqueness wavelet descriptor for planar closed
curves,” IEEE Trans. Image Processing, vol. 9, pp.834-845, May 2000.
[6] M. Li, H. G. McAllister, N. D. Black, and T. A. D. Perez, “Perceptual
time-frequency subtraction algorithm for noise reduction in Hearing aids,” IEEE
Trans. Biomedical Engineering, vol. 48, pp.979-988, Sep. 2001.
[7] O. Farooq and S. Datta, “Robust features for speech recognition based on
admissible wavelet packets,” Electronics Letters, vo. 37, pp.1554-1555, Dec.
2001.
[8] S. H. Chen and J. F. Wang, “Application of wavelet transforms for C/V
segmentation on Mandarin speech signals,” IEE Proceedings Vision, Image and
Signal Processing, vol.148, pp.133-139, April 2001.
[9] A. K. Barros, T. Rutkowski, F. Itakura, and N. Ohnishi, “Estimation of speech
embedded in a reverberant and noisy environment by independent component
analysis and wavelets,” IEEE Trans. Neural Networks, vol.13, pp.888-893, July
2002.
[10] S. Mallat and S. Zhong, “Characterization of signal from multiscale edges,”
IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 14, pp.710-732, July
1992.
[11] S. Saladi, P. Pinnamaneni, J. Meyer, “Texture-based 3-D brain imaging,” IEEE
2nd Int. Sym. On Bioinformatics and Bioengineering, 2001, pp.136-143.
[12] J. W. Lin, A. F. Laine, and S. R. Bergmann, “ Improving PET-based
physiological quantification through methods of wavelet denoising,” IEEE Tran.
Biomedical Engineering, vol. 48, pp.202-212, Feb. 2001.
[13] X. Cheng, I. Akiyama, K. Itoh, Y. Wang, N. Yaniguchi, and M. Nakajima,
“Automated detection of breast tumors in ultrasonic images using fuzzy
reasoning,” Int. Conf. on Image Processing, vol. 3, 1997, pp.420-423.
[14] X. Cheng, K. Itoh, A. Ohya, K. Omoto, Y. Wang, N. Taniguchi, S. Ogawa, and I.
Akiyama, “Intelligent systems using fuzzy logic for the determination of breast
tumors,” Proc. Of the 20th Annual Int. Conf. of the IEEE Engineering in Medicine
and Biology Society, vol. 20, 1998, pp.1356-1359.
[15] B. E. Usevitch, “A tutorial on modern lossy wavelet image compression:
Foundations of JPEG2000,”IEEE Signal Processing Mag., vol. 18, pp.22-35,Sept.
2001.
[16] G. F. Ribeiro, G. V. Mendonca, “Image coding using biorthogonal Wavelet
Transform,” Circuits and Systems, 1995, Proceedings. , Proceedings of the 38th
Midwest Symposium on, vol. 2, pp.866-868, 1996.
[17] A. Skodras, “The JPEG 2000 still image compression standard,” IEEE Signal
Processing Mag., vol.18, no.5, pp.36-58, Sep. 2001.
[18] K. C. Hung, Y. J. Huang, F. C. Hsieh, J. C. Wang, “An AOCA-based VLSI
architecture for non-recursive 2D discrete periodized wavelet transform,” Digital
Signal Processing, 2002. DSP 2002. 2002 14th International Conference on ,
vol. 1 , pp. 273 -276, 1-3 July 2002
[19] M. Nibouche, A. Bouridane, O. Nibouche, “ Design and FPGA implementation
of biorthogonal discrete wavelet transforms,” EUROCON’2001, Trends in
communications, international conference on. , vol. 1,pp. 103-106,2001.
[20] M. Vishwanath, “The recursive pyramid algorithm for the discrete wavelet
transforms, “IEEE Trans. On Signal Processing, vol.42, no.3, pp.673-677,Mar.
1994.
[21] K. C. Hung, Y. S. Hung, and Y. J. Huang, “A non-separable VLSI architecture for
2D discrete periodized wavelet transform,” IEEE Trans. VLSI systems, vol.9,
pp.565-576, Oct. 2001.
[22] J. M. Jou, Y.H. Shiau, C.C. Liu, “Efficient VLSI architectures for the
biorthogonal wavelet transform by filter bank and lifting scheme,” The 2001 IEEE
International Symposium on, vol.2, pp529-532, 2001.
[23] T. Acharya, P.Y. Chen,”VLSI implementation of a DWT architecture,”
Proceedings of the 1998 IEEE International Symposium on, vol.2, pp272-275,
1998.
[24] A. Grzeszczak, M. K. Mandal, S. Panchanathan, T.Yeap, “VLSI implementation
of discrete wavelet transform,” IEEE Trans. VLSI systems, vol.4, no.4,
pp.421-433, Dec. 1996.
[25] I. Daubechies, Ten Lectures on Wavelets, Philadelphia, PA, 1992.
[26] S. Mallat, “A theory for multiresolution signal decomposition: the wavelet
representation,” IEEE Trans. Pattern Anal. Machine Intell., vol. 11, pp.674-693,
July 1989.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 許仁舉(2000),「新訂『農村社區土地重劃條例』簡介」,土地事務月刊,第345期,頁4~13。
2. 張俊彥(2000),「從景觀生態之觀點探討農村地區之角色與規劃」,科學農業,第48卷,第1、2期,頁1~12。
3. 徐紹彬(1998),「發展權(容積)移轉應用於工業區開發之研究」,工業簡訊,第28卷,第9期,頁70~87。
4. 陳櫻琴(2000),「農地農用政策之轉向-從增訂農發條例第十八條談起」,月旦法學雜誌,第58期,頁56~67。
5. 陳明燦(2000c),「我國農地之使用管制:國土規劃法制之觀點」,月旦法學雜誌,第58期,頁69~88。
6. 陳明燦(1999),「我國農村地區農舍用地規劃制度之研究:管制政策的觀點」,法商學報,第35期,頁287~325。
7. 陳守禮(1999),「災區重建可能方式系列探討-以農村社區土地重劃推行九二一地震災區重建工作之芻議」,地政通訊,第3期,頁16~20。
8. 許世強(2001),「農發條例修正後新購農地興建農舍政策之探討」,人與地,第212、213期,頁55~84。
9. 洪忠修(2000),「農舍管理與農村地區建築規劃」,農業世界,第201期,頁66~71。
10. 林國慶(1992),「以可移轉發展權制度維護農業區之可行性分析」,經社法制論叢,第10期,頁55~82。
11. 林英彥、陳奉瑤(1995),「坡地農村社區重劃可行性之研究」,土地經濟年刊,第六期,頁199~213。
12. 吳功顯、趙靜慧(1998),「台灣農地重劃之探討」,人與地,第178期,頁4~16。
13. 吳功顯(1999),「台灣坡地農村發展綜合規劃之探討」,人與地,第188期,頁4~19。
14. 曾麗紋(2001),「空間權與發展權法制化之研究」,現代地政,第242期,頁49~54。
15. 黃志偉(2000),「新購農地興建農舍政策之剖析」,全國律師,第4卷,第2期,頁29~36。