|
[1] N. ANTAR AND H. DEMIRAY Weakly nonlinear waves in a stressed thin elastic tube containing a viscous fluid, International Journal of Engineer-ing Science. 37(1999) 1859-1876. [2] N. ANTAR AND H. DEMIRAY The boundary layer approximation and non- linear waves in elastic tubes, International Journal of Engineering Sci- ence. 38 (2000) 1441-1457. [3] A. ARMAOU AND P. D. CHRISTOFIDES Wave suppression by nonlin- ear nite-dimensional control, Chemical Engineering Science. 55(2000) 2627-2640. [4] T. B. BENJAMIN, The stability of solitary waves, Proc. Roy. Soc. London Ser. A 328 (1972) 153-183. [5] J. L. BONA, On the stability theory of solitary waves, Proc. Roy. Soc. London Ser. A 344 (1975) 363-374. [6] J. L. BONA AND M. E. SCHONBEK, Travelling-wave solutions to the Korteweg-de Vries-Burgers equation, Proceeding of the Roval Society of Edinburgh, 101A (1985) 207-226. [7] J. CANOSA AND J. GAZDAG, The Korteweg-de Vries-Burgers equations, J. Comput. Phys, 23 (1977) 393-403. [9] E. A. CODDINGTON AND N. LEVINSON, Theory of ordinary dierential equa- tions, (New York: McGraw-Hill, 1955). [10] P. G. DRAZIN AND R. S. JOHNSON, Solitons: an Introduction. [11] K. GODA, On stability of some nite dierence schemes for the KdV equation, J. Phys. Soc. Japan, 39 (1975) 229. [12] I. S. GRANDSHTEYN AND I. M. RYZHIK, Table of Integrals, Series, and Products. [13] P. HARTMAN, Ordinary dierential equations, (Baltimore: published by the author, 1978). [14] A. JEFFREY AND T. KAKUTANI, Weak nonlinear dispersive waves: a dis- cussion centred around the Korteweg-de Vries equation, SIAM. Rev, 14 (1972) 582-643. [15] R. S. JOHNSON, A nonlinear equation incorporating damping and disper- sion, J. Fluid. Mech, 42 (1970) 49-60. [16] H. C. KU, T. D. TAYLOR AND R. S. HIRSH, Pseudospectral methods for solution of the incompressible Navier-Stokes equation, Comput. Fluids. 15 (1987) 195-214. [17] R. MCOWEN, Partial Dierential Equations: Methods and Applications, (1995) 582-643. [18] H. M. PARK, M. W. LEE AND Y. D. JANG, An ecient computational method of boundary optimal control problems for the Burgers' equation, Comput. Methods. Appl. Mech. Engry, 166 (1998) 289-308. 34 [19] L. A. PELETIER, Asymptotic stability of travelling waves. In the Proceed- ings of the IUTAM symposium on instability of continuous system (ed. H. Leipholz),pp. 418-422 (Berlin: Springer, 1971). [20] C. H. SU AND, C. S. GARDNER, Derivation of the Korteweg-de Vries and Burgers' equation, J. Math. Phys, 10 (1969) 536. [21] G. B. WHITHAM, Linear and nonlinear waves, New York: John Wi- ley,(1974). [22] S. I. ZAKI, A quintic B-spline nite elements scheme for the KdVB equa- tion, Comput. Methods Appl. Mech. Engrg, 188 (2000) 121-134. [23] S. I. ZAKI, Solitary waves of the Korteweg-de Vries-Burgers' equation, Comput. Phy. Communications. 126 (2000) 207-218. [24] Y. N. ZAYKO AND I. S. NEFEDOV, New class of solutions of Korteweg-de Vries-Burgers Equation, Applied Mathematics Letters. 14 (2001) 115- 121. 35
|