跳到主要內容

臺灣博碩士論文加值系統

(44.200.27.215) 您好!臺灣時間:2024/04/24 17:49
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:王奕杰
論文名稱:利用Enhancer及Intron增進一個水稻RNA結合蛋白質基因啟動子的活性
論文名稱(外文):Enhancement of promoter activity of a rice RNA-binding protein gene by enhancer and intron
指導教授:陳幼光余淑美余淑美引用關係
學位類別:碩士
校院名稱:國立屏東科技大學
系所名稱:生物科技研究所
學門:生命科學學門
學類:生物科技學類
論文種類:學術論文
論文出版年:2003
畢業學年度:91
語文別:中文
論文頁數:81
中文關鍵詞:RNA結合蛋白質啟動子
外文關鍵詞:RNA-binding proteinpromoter
相關次數:
  • 被引用被引用:2
  • 點閱點閱:201
  • 評分評分:
  • 下載下載:16
  • 收藏至我的研究室書目清單書目收藏:0
水稻為全球栽種面積最大,且為最重要糧食作物之一。近年來為了提高水稻附加價值,許多研究以分子生物技術利用水稻生產外源蛋白。而基因的表現受啟動子所調控且將會影響往後蛋白質表現、回收及植物的生長,因此需要發展一個適當且具高表現量之啟動子。
水稻A1基因是一種glycine-rich RNA binding protein,並持續表現在水稻細胞及幼苗中。A1(1800)啟動子全長約1800bp,將A1(1800)啟動子依序刪除成不同片段大小之啟動子,結果發現全長約540bp之啟動子其活性與1800bp長度之啟動子相似,將它命名為A1(540) 啟動子。
為了研究A1(1800)和A1(540)啟動子活性以及提高A1(1800)和A1(540)啟動子表現外來基因的能力,於是在適當位置分別插入Ubiquitin(Ubi)、Actin (Act1)與A1等基因之intron及α-amylase (αAmy3)的sugar response sequence(SRS)。再將改造過的A1(1800)啟動子-luciferase和A1(540)啟動子-luciferase之表現載體利用微粒子投射(particle bombardment)和農桿菌轉殖方法(Agrobacterium-mediated transformation)導入水稻細胞中,進行短暫分析及基因轉殖,發現兩種方法結果相似。當Ubi、Act1與A1三個基因的intron分別插入A1(1800)和A1(540)啟動子時,Luciferase表現均會顯著增加,而且以插入Ubi之intron對活性提高最大。而在SRS插入A1(1800)和A1(540)啟動子方面,亦發現SRS可以顯著增加A1(1800)和A1(540)啟動子的活性,並顯示出受糖調控的特性。SRS插入位置愈靠近A1(1800)和A1(540)啟動子之TATA box且重覆數目愈多,A1(1800)和A1(540)啟
動子增加的活性愈大。未來將進一步瞭解SRS及introns是否會影響A1(1800)和A1(540)啟動子在基因轉殖水稻不同組織及不同生長時期之表現量,並探討intron如何提高啟動子之活性。
Rice is grown worldwide as one of the most important staple food crops. Recently, expression of foreign proteins in rice by transgenic approaches has been actively pursued for future food security as well as for added values of rice. Promoters play a very significant role in controlling gene expression and protein accumulation during plant growth. It has been an important issue to identify promoters conferring high level expression of foreign proteins in transgenic rice.
A1 gene encodes a rice glycine-rich RNA binding protein. A1(1800) promoter with 1800-bp length has been isolated. The A1(1800) promoter confers foreign gene expression in cultured rice suspension cells and seedlings. Deletion analysis has showed that deletion of the A1(1800) promoter to 540 bp, designated as the A1(540) promoter, maintained promoter activity similar to that of the full length A1(1800) promoter.
To enhance activity of the A1(1800) and A1(540) promoters, the Ubiquitin intron(Ubi(In)), Actin intron(Act(In)), A1 intron (A1(In)) and the sugar response sequence(SRS)ofαAmy3 were inserted into the A1(1800) and A1(540) promoters. Luciferase gene was fused downstream of the modified promoters as a reporter. These constructs were delivered into rice embryos by particle bombardment and Agrobacterium-mediated transformation. The results from transient expression assays were consistent with those from stable transformation analysis. Luciferase activity was significantly higher when the A1(1800) and A1(540)
promoters contained Ubi(In), Act(In) and A1(In), with the Ubi(In) conferring the highest activity. Insertion of SRS into the A1(1800) and A1(540) promoters also enhanced luciferase activity in a sugar-dependent manner. The enhancement was dependent on the position of SRS inserted relative to the TATA box within the A1(1800) promoter and the copy number of SRS.
Our studies demonstrated that introns and SRS insertions significantly increase the activity of A1(1800) and A1(540) promoters. Future studies will be to determine whether SRS and introns confer temporal and spatial enhancemant of the A1(1800) promoter activity in transgenic rice.
中文摘要………………………………………………………….. Ⅰ
英文摘要…………………………………………………………..Ⅲ
誌謝…………………………………………………………..Ⅴ
前人研究…………………………………………………………..1
一.宿主表達系統………………………………………………1
二.在植物系統中所生產的蛋白質…………………………….3
三.應用於植物表達系統的啟動子………………………………4
四.促進啟動子活性的方法……………………………………..4
五.A1(1800)啟動子的基本特性……………………………6
六.A1(540) 啟動子……………………………………………….7
材料與方法……………………………………………………………8
一.以PCR合成DNA片段……………………………………….8
二.接合反應............................................10
三.細菌的轉型(transformation)作用……………………………..12
四.細菌plasmid DNA的純化……………………………………..13
五.利用基因槍將DNA送入水稻胚中做短暫表現分析..........15
六.水稻細胞利用農桿菌(Agrobacterium)轉殖的方法……..18
七.GUS的染色分析法……………………………………………..21
實驗結果………………………………………………………………….23
利用微粒子投射(particle bombardment)的方法分析啟動子活性….23
一.載體之構築…………………………………………………………23
二. 不論在供糖或缺糖下 Ubi(In)、Act(In)、A1(In)皆能提高A1啟動子之活性,而其中以Ubi(In)所提高活性最大………………………….24
三.SRS愈靠近A1啟動子TATA box,A1啟動子所提高的活性愈高,且讓原本受糖調控不顯著之A1啟動子變成顯著受缺糖所誘導表現..25
四. A1(1800) -SRS(-100)-A1(In)及A1(1800) -SRS(-100)-Ubi(In)之啟動子,不論在供糖或缺糖其活性均高於Actin啟動子………………25
利用農桿菌基因轉殖方法分析啟動子在T0癒傷組織中的表現……..27
一.載體之構築………………………………………………………27
二. 轉殖成功之T0水稻癒傷組織,經GUS活性分析能觀察到深淺不一的藍綠色……………………………………………………………27
三. Ubi(In)、Act(In)、A1(In)皆能提高A1啟動子之活性,而其中以Ubi(In)所提高活性最大,且所測得的Luciferase活性均是供糖高於缺糖.......28
四.只要接入SRS之啟動子,所測得的Luciferase活性均是缺糖高於供糖…………………………………………………………………28
五.Ubi和Actin啟動子,所測得的Luciferase活性均是供糖高於缺糖且Ubi啟動子不論在供糖或缺糖,表現量均大於Actin啟動子………29
A1啟動子經不同修飾後不論在短暫表現系統或T0癒傷組織所測得的Luciferase活性其增加模式皆為相似………………………………………30
討論…………………………………………………………………………
一.A1啟動子之表現模式……………………………………………
二.Introns對啟動子表達能力的影響…………………………….
三.SRS對啟動子的影響…………………………………………..
四.啟動子在供糖與缺糖表現的差異…………………………….
五.啟動子的比較與將來的應用……………………………………
附圖………………………………………………………………………
附表………………………………………………………………………
參考文獻………………………………………………………………
附錄……………………………………………………………………
作者簡介………………………………………………………………
侯新龍(1999)糖及氮對水稻基因表現的調控作用。國立台灣師範大學生物學研究所博士論文。
陸重安(1998)水稻α-澱粉水解酵素基因表現受糖調控分子機制之研究。國防醫學院生命科學研究所博士論文。
Agius, F., González-Lamothe, R., Caballero, J. L., Muñoz-Blanco, J., Botella, M. A. and Valpuesta, V. (2003). Engineering increased vitamin C levels in plants by overexpression of a D-galacturonic acid reductase. Nat. Biotechnol. 21, 177-181.
Alba, M.M. and Pages, M. (1998). Plant proteins containing the RNA-recognition motif. Trends Plant Sci. 1, 15-21.
Aneeta., Sanan-Mishra, N., Tuteja, N. and Sopory, S.K. (2002). Salinity- and ABA-induced up-regulation and light-mediated modulation of mRNA encoding glycine-rich RNA-binding protein from Sorghum bicolor. Biochem. Biophys. Res. Commun. 296, 1063-1068.
Bandziulis, R.J., Swanson, M.S. and Dreyfuss, G. (1989). RNA—binding proteins as development regulators. Genes Dev. 3, 431-437.
Baudo, M.M., Meza-Zepeda, L.A., Palva, E.T. and Heino, P. (1999). Isolation of a cDNA corresponding to a low temperature- and ABA-responsive gene encoding a putative glycine-rich RNA-binding protein in Solanum commersonii. J. Exp. Bot. 50, 1867-1868.
Bouquin, T., Thomsen, M., Nielsen, L. K., Green, T.H., Mundy, J. and Dziegiel, M.H. (2002). Human Anti-Rhesus D IgG1 Antibody Produced in Transgenic Plants. Transgenic Res. 11, 115-122.
Buchman, A.R. and Berg, P. (1988). Comparison of intron-dependent and intron-independent gene expression. Mol. Cell Biol. 8, 4395—4405.
Burd, C.G. and Dreyfuss, G. (1994). Conserved structures and diversity of functions of RNA-binding proteins. Science 265, 615-621.
Cabanes-Macheteau, M., Fitchette-Laine, A.C., Loutelier-Bourhis, C., Lange, C., Vine, N. and Ma, J. (1999). N-Glycosylation of a mouse IgG expressed in transgenic tobacco plants. Glycobiology 9, 365-372.
Callis, J., Fromm, M. and Walbot, V. (1987). Introns increase gene expression in cultured maize cells. Genes Dev. 1, 1183—1200.
Carpenter, C.D., Kreps, J.A. and Simon, A.E. (1994). Genes encoding glycine-rich Arabidopsis thaliana proteins with RNA-binding motifs are influenced by cold treatment and an endogenous circadian rhythm. Plant Physiol. 104, 1015-1025.
Chaubet-Gigot, N., Kapros, T., Flenet, M., Kahn, K., Gigot, C. and Waterborg, J.H. (2001). Tissue-specific enhancement of transgene expression by introns of replacement histone H3 genes of Arabidopsis. Plant Mol. Biol. 45, 17—30.
Chen, P.W., Lu, C.A., Yu, T.S., Tseng, T.H., Wang, C.S. and Yu, S.M. (2002). Rice a-Amylase transcriptional enhancers direct multiple mode regulation of promoters in transgenic rice. J. Biol. Chem. 277, 13641-13649.
Choi, S.M., Lee, O.K., Kwon, S.Y., Kwak, S.S., Yu, D.Y. and Lee, H.S. (2003). High expression of a human lactoferrin in transgenic tobacco cell cultures. Biotechnol. Letters 25, 213-218.
Chong, D.K.X. and Langridge, W.H.R. (2000). Expression of full-length bioactive antimicrobial human lactoferrin in potato plants. Transgenic Res. 9, 71-78.
Clancy, M. and Hannah, C. (2002). Splicing of the maize Sh1 first intron is essential for enhancement of gene expression and a T-rich motif increases expression without affecting splicing. Plant Physiol. 130, 918-929.
Cobianchi, F., Karpel, R.L., Williams, K.R., Notario, V. and Wilson, S.H. (1988). Mammalian heterogeneous nuclear ribonucleoprotein complex protein A1: large-scale overproduction in Escherichia coli and cooperative binding to single-stranded nucleic acids. J. Biol. Chem. 263, 1063-1071.
Conti, E. and Izaurralde, E. (2001). Nucleocytoplasmic transport enters the atomic age. Curr. Opin. Cell Biol. 13, 310—319.
Cosa, B.D., Moar, W., Lee, S.B., Miller, M. and Daniell, H. (2001). Overexpression of the Bt cry2Aa2 operon in chloroplasts leads to formation of insecticidal crystals. Nat. Biotechnol. 19, 71-74.
Curie, C., Axelos, M., Bardet, C., Atanassova, R., Chaubet, N. and Lescure, B. (1993). Modular organization and developmental activity of an Arabidopsis thaliana EF-1a gene promoter. Mol. Gen. Genet. 238, 428—436.
Dean, C., Favreau, M., Bond-Nutter, D., Bedbrook, J. and Dunsmuir, P. (1989). Sequences downstream of translation start regulate quantitative expression of two petunia rbcS genes. Plant Cell 1, 201—208.
Donath, M., Mendel, R., Cerff, R. and Martin, W. (1995). Intron-dependent transient expression of the maize GapA1(1800) gene. Plant Mol. Biol. 28, 667—676.
Dreyfuss, G., Matunis, M.J., Piñol, R.S. and Burd, C.D. (1993). hnRNP proteins and the biogenesis of mRNA. Annu. Rev. Biochem. 62, 289-321.
Dunn, M.A., Browm, K., Lightowlers, R. and Hughes, M.A. (1996). A low-temperature-responsive gene from barley encodes a protein with single-stranded nucleic acid-binding activity which is phosphorylated in vitro. Plant Mol. Biol. 30, 947-959.
Fong, Y.W. and Zhou, Q. (2001). Stimulatory effect of splicing factors on transcriptional elongation. Nature 414, 929—933.
Gidekel, M., Jimenez, B. and Herrera-Estrella, L. (1996). The first intron of the Arabidopsis thaliana gene coding for elongation factor 1b contains an enhancer-like element. Gene 170, 201—206.
Hiatt, A., Cafferkey, R. and Bowdish, K. (1989). Production of antibodies in transgenic plants. Nature 342, 76-78.
Hirose, Y. and Manley, J.L. (2000). RNA polymerase II and the integration of nuclear events. Genes Dev. 14, 1415—1429.
Izaurralde, E., Lewis, J., McGuigan, C., Jankowska, M., Darzynkiewicz, E. and Mattaj, I.W. (1994). A nuclear cap binding protein complex involved in pre-mRNA splicing. Cell 78, 657—668.
Jaeger, G.D., Scheffer, S., Jacobs, A., Zambre, M., Zobell, O., Goossens, A., Depicker, A. and Angenon, G. (2002). Boosting heterologous protein production in transgenic dicotyledonous seeds using Phaseolus vulgaris regulatory sequences. Nat. Biotechnol. 20, 1265-1268.
Jani, D., Meena, L.S., Rizwan-ul-Haq, Q. M., Singh, Y., Sharma, A.K. and Tyagi, A.K. (2002). Expression of Cholera Toxin B Subunit in Transgenic Tomato Plants. Transgenic Res. 6, 403-413.
Jung, G., Denefle, P., Becquart, J. and Mayaux, J.F. (1988). High cell density fermentation studies of recombinant Escherichia coli strains expressing human Interleukin-1B. Ann. Inst. Pasteur/Microbiol. 139,129-146.
Khoudi, H., Laberge, S., Ferullo, J,M., Bazin, R., Darveau, A. and Castonguay, Y. (1999). Production of a diagnostic monoclonal antibody in perennial alfalfa plants. Biotechnol. Bioeng. 64, 135-143.
Kwon, T. H., Seo, J. E., Kim, J., Lee, J. H., Jang, Y. S. and Yang, M. S. (2003). Expression and secretion of the heterodimeric protein interleukin-12 in plant cell suspension culture. Biotechol. Bioeng. 81, 870-875.
Le Hir, H., Gatfield, D., Izaurralde, E. and Moore, M.J. (2001). The exon—exon junction complex provides a binding platform for factors involved in mRNA export and nonsense-mediated mRNA decay. EMBO J. 20, 4987—4997.
Leelavathi, S. and Reddy, V.S. (2003). Chloroplast expression of His-tagged GUS-fusions: a general strategy to overproduce and purify foreign proteins using transplastomic plants as bioreactors. Mol. Breed. 11, 49-58.
Leon, P., Planckaert, F. and Walbot, V. (1991). Transient gene expression in protoplasts of Phaseolus vulgaris isolated from a cell suspension culture. Plant Physiol. 95, 968—972.
Lu, C. A., Lim, E. K. and Yu, S. M. (1998). Sugar response sequence in the promoter of a rice α-Amylase gene serves as a transcriptional enhancer. J. Biol. Chem. 273, 10120—10131.
Luehrsen, K.R. and Walbot, V. (1991). Intron enhancement of gene expression and the splicing efficiency of introns in maize cells. Mol. Gen. Genet. 225, 81—93.
Luo, M-J. and Reed, R. (1999). Splicing is required for rapid and efficient mRNA export in metazoans. Proc. Natl. Acad.Sci. USA 96, 14937—14942.
Luo, M-J., Zhou, Z., Magni, K., Christoforides, C., Rappsilber, J., Mann, M. and
Reed, R. (2001). Pre-mRNA splicing and mRNA export linked by direct interactions between UAP56 and Aly. Nature 413, 644—647.
Ma, J. K. (1995).Generation and assembly of secretory antibodies in plants. Science 268, 716-719.
Maas, C., Laufs, S., Grant, S., Korfhage, C. and Werr, W. (1991). The combination of a novel stimulatory element in the first exon of the maize Shrunken-1 gene with the following intron 1 enhances reporter gene expression up to 1000-fold. Plant Mol. Biol. 16, 199—207.
Maniatis, T. and Reed, R. (2002). An extensive network of coupling among gene expression machines. Nature 416, 499—506.
Manley, J.L. (2002). Nuclear coupling: RNA processing reaches back to transcription. Nat. Struct. Biol. 9, 790—791.
Mascarenhas, D., Mettler, I.J., Pierce, D.A. and Lowe, H.W. (1990). Intron-mediated enhancement of heterologous gene expression in maize. Plant Mol. Biol. 15, 913—920.
Massound, M., Bischoff, R., Dalemans, W., Pointu, H., Attal, J., Schultz, H., Clesse, D., Stinnakre, M.G., Pavirani, A. and Houdebine, L.M.(1991).Expression of active recombinant human alpha-1-antitrypsin in the milk of transgentic rabbit. J. Biotech. 18,193-204.
Mattaj, I.W. (1990). Splicing stories and poly(A) tales: an update on RNA processing and transport. Curr. Opin. Cell Biol. 2, 528-538.
McCormick, A. (1999). Rapid production of specific vaccines for lymphoma by expression of the tumor-derived single-chain Fv epitopes in tobacco plants. Proc. Natl. Acad. Sci. U.S.A. 96, 703-708.
McElroy, D., Zhang, W., Cao, J. and Wu, R. (1990). Isolation of an efficient actin promoter for use in rice transformation. Plant Cell 2, 163—171.
Meredith, J. and Storti, R.V. (1993). Developmental regulation of the Drosophila tropomyosin II gene in different muscles is controlled by muscle-type-specific intron enhancer elements and distal and proximal promoter control elements. Dev. Biol. 159, 500—512.
Minvielle-Sebastia, L. and Keller, W. (1999). mRNA polyadenylation and its coupling to other RNA processing reactions and to transcription. Curr. Opin. Cell Biol. 11, 352—357.
Norris, S.R., Meyer, S.E. and Callis, J. (1993). The intron of Arabidopsis thaliana polyubiquitin genes is conserved in location and is a quantitative determinant of chimeric gene expression. Plant Mol. Biol. 21, 895—906.
Okkema, P.G., Harrison, S.W., Plunger, V., Aryana, A. and Fire, A. (1993). Sequence requirements for myosin gene expression and regulation in Caenorhabditis elegans. Genetics. 135, 385—404.
Orphanides, G. and Reinberg, D. (2002). A unified theory of gene expres-sion. Cell 108, 439—451.
Park, D.H., Yoon, S.Y.H., Nam, H.G. and Park, J.M. (2002). Expression of functional human-cytosolic Cu/Zn superoxide dismutase in transgenic tobacco. Biotechnol. Letters 24, 681-686.
Perrin1, Y., Vaquero, C., Gerrard1, I., Sack, M., Drossard, J., Stöger1, E., Christou, P. and Fischer, R. (2000). Transgenic pea seeds as bioreactors for the production of a single-chain Fv fragment (scFV) antibody used in cancer diagnosis and therapy. Mol. Breed. 6, 345-352.
Ram, N., Ayala, M., Lorenzo, D., Palenzuela, D., Herrera, L., Doreste, V., Pérez, M., Gavilondo, J.V. and Oramas, P. (2002). Expression of a single-chain Fv antibody fragment specific for the Hepatitis B surface antigen in transgenic tobacco plants. Transgenic Res. 11, 61-64.
Rethmeier, N., Seurinck, J., Van Montagu, M. and Cornelissen, M. (1997). Intron-mediated enhancement of transgene expression in maize is a nuclear, gene-dependent process. Plant J. 12, 895—899.
Romanos, M.A., Scorer, C.A. and Clare, J.J. (1992). Foreign gene expression in yeast: a review. Yeast 8, 423-488.
Rose, A.B. (2002). Requirement for intron-mediated enhancement of gene expression in Arabidopsis. RNA 8, 1444-1453.
Rose, A.B. and Last, R.L. (1997). Introns act post-transcriptionally to increase expression of the Arabidopsis thaliana tryptophan pathway gene PAT1. Plant J. 11, 455—464.
Sachetto-Martins, G., Franco, L.O. and de Oliveira, D.E. (2000). Plant glycine-rich proteins: a family or just proteins with a common motif? Biochim. Biophys. Acta 21, 1-14.
Sawanson, M.E., Martin, M.J., ODonnell, J.K., Hoover, K., Lago, W., Hantress, V., Parsons, C.T., Pinkert, C.A., Pilder, S. and Logan, J.S. (1992). Production of functional human hemoglobin in transgentic swine. Biotechnology 10, 557-559.
Scheller, J., Gührs, K.H., Grosse, F. and Conrad, U. (2001). Production of spider silk proteins in tobacco and potato. Nat. Biotechenol. 19, 573-577.
Simpson, C.G. and Filipowicz, W. (1996). Splicing of precursors to mRNA in higher plants: mechanism, regulation and sub-nuclear organisation of the spliceosomal machinery. Plant Mol. Biol. 32, 1—41.
Sinibaldi, R.M. and Mettler, I.J. (1992). Intron splicing and intron-mediated enhancedexpression in monocots. In WE Cohn, K Moldave, eds, Progress in Nucleic Acid Research and Molecular Biology. Academic Press, New York. 42, 229—257.
Siomi, H. and Dreyfuss, G. (1997). RNA-binding protein as regulators of gene expression. Curr. Opin. Genet. Dev. 7, 345-353.
Smith, G. E., Fraser, M. J. and Summers, M.D. (1983). Molecular engineering of the Autographa californica nuclear polyhedrosis virus genome: deletion mutations within the polyhedron gene. J. Virol. 46,584-593.
Stoger, E., Vaquero, C., Torres, E., Sack, M., Nicholson, L. and Drossard, J. (2000). Cereal crops as viable production and storage systems for pharmaceutical scFv antibodies. Plant Mol. Biol. 42, 583-590.
Strasser, K. and Hurt, E. (2001). Splicing factor Sub2p is required for nuclear mRNA export through its interaction with Yra1p. Nature 413, 648—652.
Torres, E., Vaquero, C., Sack, M., Stoger, E. and Drossard, J. (1999). Rice cell culture as an alternative production system for functional diagnostic and therapeutic antibodies. Transgenic Res. 8, 441-449.
Verwoerd, T.C., van Paridon, P.A., van Ooyen, A.J.J., van Lent, J.W.M., Hoekema, A. and Pen, J. (1995). Stable accumulation of Aspergillus niger phytase in transgenic tobacco leaves. Plant Physiol. 109, 1199-1205.
Voss, A., Niersbach, M., Hain, R., Hirsch, H., Liao, Y. and Kreuzaler, F. (1995). Reduced virus infectivity in N. tabacum secreting a TMV-specific full size antibody. Mol. Breeding. 1, 39-50.
Xu, Y., Yu, H. and Hall, T.C. (1994). Rice triosephosphate isomerase gene 5'' sequence directs b-glucuronidase activity in transgenic tobacco but requires an intron for expression in rice. Plant Physiol. 106, 459—467.
Zhang, S-H., Lawton, M.A., Hunter, T. and Lamb, C.J. (1994). atpk1, a novel ribosomal protein kinase gene from Arabidopsis: I. Isolation, characterization, and expression. J. Biol. Chem. 269, 17586—17592.
Ziegler, M., Thomas, S. and Danna, K. (2000). Accumulation of a thermostable endo-1,4-b-D-glucanase in the apoplast of Arabidopsis thaliana leaves. Mol. Breeding. 6, 37-46.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top