跳到主要內容

臺灣博碩士論文加值系統

(44.201.97.0) 您好!臺灣時間:2024/04/14 04:39
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳柏宏
研究生(外文):Po-Hong Chen
論文名稱:紅梗水芋中黏質多醣類其生合成主要酵素尿嘧啶雙磷酸葡萄糖去氫酶基因之選殖及表現
論文名稱(外文):Cloning and Expression of an Enzyme that Biosynthesizes Polysaccharide in Mucilage from Colocasia esculenta (Taro): UDP-glucose dehydrogenase
指導教授:黃卓治黃卓治引用關係吳美莉吳美莉引用關係
指導教授(外文):Tzou-Chi Huang, Ph. D.Mei-Li Wu, Ph. D.
學位類別:碩士
校院名稱:國立屏東科技大學
系所名稱:生物科技研究所
學門:生命科學學門
學類:生物科技學類
論文種類:學術論文
論文出版年:2003
畢業學年度:91
語文別:中文
論文頁數:103
中文關鍵詞:黏質阿拉伯半乳糖蛋白尿嘧啶雙磷酸葡萄糖醛酸紅梗水芋尿嘧啶雙磷酸葡萄糖去氫酶半纖維素
外文關鍵詞:mucilagearabinogalactan-protein (AGPs)UDP-glucuronic acid (UDPGA)Colocasia esculenta (taro)UDP-glucose dehydrogenase (UDPGDH)hemicellulose
相關次數:
  • 被引用被引用:0
  • 點閱點閱:209
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
存在於植物中的多醣物質除了合成植物細胞壁的半纖維素以及球莖中儲藏的澱粉外,最主要的就是維持植物細胞滲透壓的水溶性黏質(mucilage)。黏質當中最主要的聚合體為阿拉伯半乳糖蛋白(arabinogalactan-protein, AGPs),AGPs蛋白質鏈可藉由羥基化作用並在高基氏體中連接上多醣類。植物多醣類化合物一般結構中含有許多經過醣基化的取代基(glycosyl residues),再以不同連結方式結合不同種單醣類修飾而成。這些經過修飾的多醣類有一共同的前趨物─尿嘧啶雙磷酸葡萄糖醛酸(UDP-glucuronic acid, UDPGA),其會再經植物轉化代謝形成多醣類之次級中間產物,如:尿嘧啶雙磷酸阿拉伯糖(UDP-arabinose)、尿嘧啶雙磷酸半乳糖醛酸(UDP-galacturonce acid)以及尿嘧啶雙磷酸木糖(UDP-xylose)等,最後再形成最終存在於植物中的多醣類,如:arabinogalactans、arabinans、xylans、xyloglucans…等。而UDPGA的生合成,主要又是由尿嘧啶雙磷酸葡萄糖去氫酶(UDP-glucose dehydrogenase, UDPGDH)催化所產生,因此對於植物來說,UDPGDH是合成其生理所需多醣類的重要酵素。我們已將紅梗水芋(Colocasia esculenta)中合成UDPGDH之基因利用退化性引子(degenerate primer)以RT-PCR的方式選殖出來,並將此長度為1,443bp cDNA序列註冊於NCBI genebank之中(Accession number:AY222335)。此酵素具有一個催化活性中心部位(Gly267~Asp276)、一個NAD結合部位(Gly8~Gly14)。將此一序列與其他植物甚至動物相同基因來比較,皆有很高的相似度;此一全長之cDNA可以轉譯成為480個胺基酸,預測的蛋白質大小為52.9 kD,同時利用pET21b載體以及大腸桿菌BL21 DE3為宿主進行蛋白質表達,並以UDP-glucose做為基質而另外加入NAD+做為輔酶測量由E.coli表達系統所表達出的UDP-glucose dehydrogenase,確實具有酵素活性。另一方面,我們也利用即時螢光定量PCR(real-time PCR)比較Ugd基因於不同的植物器官及水份逆境下之表現量,發現此基因於根部的表現量遠超過莖及葉,而因水芋根部黏質分泌旺盛,所以此關鍵酵素被認為能催化產生黏質多醣類並扮演植物保護之重要角色。
The main polysaccharides include hemicellulose in cell wall and starch in corm, but appreciable quantities of water-soluble mucilage are also present in plant. Compositional analysis of purified mucilage showed that the main polymer present was an arabinogalactan-protein (AGPs). AGPs protein backbone are hydroxylated and linked to the polysaccharides in Golgi apparatus. Many of the glycosyl residues found in polysaccharides in plant are derived from the sugar precursor UDP-glucuronic acid (UDPGA), which can be converted in to UDP-arabinose, UDP-galacturonic acid, UDP-xylose, and the other components including arabinogalactans, arabinans, and xyloglucans. The enzyme controlling the biosythesis of UDP-glucuronic acid, UDP-glucose dehydrogenase (EC 1.1.1.22) (UDPGDH or Ugd), and that is the key regulator in the polysaccharides biosynthesis pathway in plant. Recently, we cloned the Ugd gene from Colocasia esculenta (1,443 bp) and register the sequence on NCBI GeneBank (accession: AY222335). The enzyme contains the characteristic motifs UDP-glucose dehydrogenase, including the catalytic center and a NAD-binding site. The sequence is highly conserved within the plant and animal sequence. The full length cDNA encodes a protein of 480 amino acids with a predicted size of 52.9 kD. We use the E.coli expression system to express the target protein, and the enzyme assay to confirm enzyme activity. We also use real-time PCR to confirm that enzyme is highly expressed in young root, but lower expression levels were observed in expanding tissues of the epicotyl, stem and in young leaves. The key enzyme: UDP-glucose dehydrogenase considering that biosynthesizes polysaccharide in mucilage and play an important role in plants.
目 錄
中文摘要----------------------------------------------------Ⅰ
英文摘要----------------------------------------------------Ⅲ
誌謝--------------------------------------------------------Ⅴ
目錄--------------------------------------------------------Ⅵ
圖索引------------------------------------------------------Ⅹ
XⅥ
表索引------------------------------------------------------
第一章 前 言------------------------------------------------ 1
第二章 文獻回顧--------------------------------------------- 3
2‧1 水芋中多醣類成份論述--------------------------------- 3
2‧2 植物中阿拉伯半乳糖蛋白之功能及特性------------------- 4
2‧3 阿拉伯半乳糖蛋白之合成路徑及結構--------------------- 5
2‧4 阿拉伯半乳糖蛋白多醣類的結構------------------------- 8
2‧5 植物中多醣類之生合成及主要催化酵素------------------- 9
2‧6 尿嘧啶雙磷酸葡萄醣去氫酶於生物體內的重要性---------- 11
第三章 材料與方法------------------------------------------ 19
3‧1 實驗材料-------------------------------------------- 19
3‧1‧1 紅梗芋一般種植方式及水份逆境處理下之栽種方法-- 19
3‧2 儀器設備-------------------------------------------- 19
3‧3 藥品試劑-------------------------------------------- 20
3‧4 紅梗芋total RNA之萃取-------------------------------21
3‧4‧1藥品及溶液之配製------------------------------- 21
3‧4‧2萃取total RNA步驟------------------------------22
3‧4‧3 RNA電泳--------------------------------------- 23
3‧4‧4 核糖核酸濃度的定量-----------------------------23
3‧5 退化性引子之設計-------------------------------------24
3‧6 反轉錄作用-------------------------------------------25
3‧7 聚合酶連鎖反應---------------------------------------25
3‧8 DNA電泳-------------------------------------------- 26
3‧9 TA cloning 接合反應---------------------------------26
3‧10 勝任細胞之製備--------------------------------------27
3‧11 選殖載體轉形進入勝任細胞----------------------------27
3‧12 藍白篩選--------------------------------------------27
3‧13 以PCR方式確定是否含有所選殖片段--------------------28
3‧14 大量增殖含有選殖片段之菌落--------------------------28
3‧15 小量質體之萃取--------------------------------------29
3‧15 定序------------------------------------------------29
3‧16 重新建構表達質體------------------------------------29
3‧17 表現目標蛋白UDP-glucose dehydrogenase---------------30
3‧18 聚丙烯醯胺膠片電泳分析------------------------------31
3‧18‧1聚丙烯醯胺膠片的製備---------------------------31
3‧18‧2 操作方法-------------------------------------- 33
3‧19 目標蛋白UDP-glucose dehydrogenase之純化-------------34
3‧20 UDP-glucose dehydrogenase之酵素活性分析測定----------34
3‧21 同步螢光定量PCR分析Ugd基因表現量差異-------------- 35
3‧21‧1 定量PCR特異性引子之設計-----------------------35
3‧21‧2 特異性引子之專一性測試-------------------------35
3‧21‧3 製作Ugd基因之標準曲線-------------------------36
3‧21‧3‧1 大量質體之抽取------------------------ 36
3‧21‧3‧2 以重新建構載體測試不同濃度梯度下PCR反應條件---------------------------------- 38
3‧21‧3‧3 以同步定量PCR偵測並繪製標準曲線-------38
3‧21‧4 以SYBR Green System進行Ugd基因相對定量分析----39
第四章 結果與討論------------------------------------------ 40
4‧1 紅梗水芋中Ugd基因之選殖------------------------------40
4‧2 紅梗水芋中Ugd基因之序列比對分析----------------------41
4‧3 Ugd基因之蛋白質表達及活性分析------------------------ 43
4‧4 即時螢光定量PCR的分析--------------------------------44
4‧5即時螢光定量PCR引子之測試及Ugd基因分析前標準曲線之繪製---------------------------------------------------- 45
4‧6以CT值換算原始拷貝數之方法---------------------------47
4‧7水芋幼苗中Ugd基因於不同器官內表達差異與影響----------48
4‧8旱芋及水芋中Ugd基因於不同器官內表達之差異與影響------50
4‧9水分逆境在不同時間處理下紅梗水芋內Ugd基因表達之差異與影響-------------------------------------------------- 52
第五章 結論------------------------------------------------ 92
第六章 參考文獻-------------------------------------------- 94
圖 索 引
圖 一、高等植物中阿拉伯半乳糖蛋白之構造及其生合成步驟--------14
圖 二、阿拉伯半乳糖蛋白的多醣結構及連接於細胞外膜連結子的構造----------------------------------------------------- 15
圖 三、醣基化磷酯醯肌醇連結子之結構------------------------- 16
圖 四、典型及非典型阿拉伯半乳糖蛋白及多醣鏈分佈於多胜肽鏈上的情形--------------------------------------------------- 16
圖 五、阿拉伯半乳糖蛋白之多醣分子結構----------------------- 17 A.實際單醣分子於多胜肽鏈上鍵結的模式----------------- 17 B.不同學者預測的單醣分子排列情形--------------------- 17
圖 六、植物中UDP-glucose dehydrogenase催化形成黏質多醣類之代謝流程預測圖------------------------------------------- 18
圖 七、紅梗水芋total RNA電泳圖----------------------------- 55
圖 八、利用反轉錄酶所合成的第一股cDNA電泳圖---------------- 55
圖 九、以RT-PCR增幅目標基因片段電泳圖---------------------- 56 A.以合成的cDNA進行第一次PCR所增幅之目標片段-------- 56
B.將目標片段切割以進行膠體純化----------------------- 56
C.以純化出的目標片段進行第二次PCR所增幅的結果------- 56
D. 將目標片段切割以進行第二次膠體純化---------------- 56
圖 十、膠體純化目標基因片段進行確認之電泳結果。將此一片段接入pGEM-T-Easy Vector中以進行定序的工作----------------- 57
圖 十一、利用PCR確認E.coli(JM109)中的目標片段電泳結果,挑第四個菌落進行定序的工作------------------------------- 57
圖 十二、紅梗水芋中Ugd基因之cDNA核苷酸及胺基酸序列---------58
圖 十三、紅梗水芋Ugd基因與其他植物之核苷酸序列比對結果(1) 59
圖 十三、紅梗水芋Ugd基因與其他植物之核苷酸序列比對結果(2) 60
圖 十三、紅梗水芋Ugd基因與其他植物之核苷酸序列比對結果(3) 61圖 十三、紅梗水芋Ugd基因與其他植物之核苷酸序列比對結果(4) 62
圖 十四、紅梗水芋中UDP-glucose dehydrogenase與其他植物胺基酸序列比對結果------------------------------------------- 63
圖 十五、Ugd基因表達載體-pET21b之限制圖譜及Ugd基因利用NdeI、 NotI接合進入pET21b的位置---------------------------- 66
圖 十六、以Ugd基因重新設計5''含NdeI切位及3''含NotI切位的專一性primer--------------------------------------------- 67
圖 十七、A.以含有NdeI、NotI限制內切位特異性引子擴增Ugd基因片段電泳圖------------------------------------------- 68 B.Lane 1:未經切割之pET21b載體,Lane 2:以NdeI及NotI切割後的pET21b,Lane 3:以NdeI及NotI切割後的Ugd基因片段----------------------------------------------- 68
圖 十八、A.純化後之Ugd基因及pET21b(NdeI and NotI cut)---- 69 B.構築完成之Ugd基因及pET21b,Lane 1、2 以NdeI及NotI切割確認構築載體,Lane 3以NdeI切割之pET21b------- 69 C.Lane 1:pET21b載體電泳圖,Lane 2:含Ugd基因之pET21b電泳圖(皆為未經切割之環形載體)------------------- 69
D.於BL21(DE3)中overexpression Ugd基因產生目標蛋白質之SDS-PAGE電泳分析結果---------------------------- 69
圖 十九、以ABI PRISM Primer Express Version 2.0針對Ugd基因之催化活性部位所設計出的專一性引子,其amplicon為75 bp -70
圖 二十、A.以ABI PRISM Primer Express Version 2.0所設計出的特異性引子進行一般PCR測試以確認引子專一性之電泳圖--- 70 B.定量PCR特異性引子與含Ugd基因之質體進行濃度梯度PCR測試,確認以real-time PCR製作標準曲線之條件電泳圖-- 70
圖 二十一、以十倍稀釋濃度梯度之重組載體利用real-time PCR偵測Ugd基因擴增效率(螢光釋放量)及確認引子專一性曲線圖----- 71
圖 二十二、以十倍稀釋濃度梯度之重組載體利用real-time PCR偵測Ugd基因有效擴增曲線圖----------------------------------- 71
圖 二十三、以CT值對應模板數取對數(log fg)所作Ugd基因之標準曲線圖------------------------------------------------- 72
圖 二十四、以CT值對應模板數取對數(log fg)所作Ugd基因之標準曲線圖------------------------------------------------- 73
圖 二十五、利用real-time PCR偵測紅梗水芋幼苗中不同器官Ugd基因之有效擴增(螢光釋放累積量)曲線圖------------------- 74
圖 二十六 、以real-time PCR分析紅梗水芋幼苗中葉片、莖部及球莖內Ugd基因的表現量差異圖------------------------------74
圖 二十七、以real-time PCR分析紅梗水芋中成株及幼苗Ugd基因表現量的差異總圖-----------------------------------------75
圖 二十八、利用real-time PCR偵測紅梗芋中不同器官及不同水分逆境處理時間下Ugd基因之有效擴增(螢光釋放累積量)曲線圖--76
圖 二十九、以real-time PCR偵測紅梗芋中不同器官及不同水分逆境處理時間下Ugd基因的表現量差異總圖----------------------76
圖 三十、以real-time PCR偵測紅梗芋中不同器官及不同水分逆境處理時間下amplicon擴增釋放SYBR Green螢光衰減總圖--------77
圖 三十一、以real-time PCR分析紅梗芋中未經水分逆境處理之旱芋Ugd基因表現量的差異圖----------------------------------- 78
圖 三十二、以real-time PCR分析紅梗芋中未經水分逆境處理之水芋Ugd基因表現量的差異圖----------------------------------- 78
圖 三十三、以real-time PCR分析紅梗芋中未經水分逆境處理之旱芋及水芋葉片Ugd基因表現量的差異圖------------------------79
圖 三十四、以real-time PCR分析紅梗芋中未經水分逆境處理之旱芋及水芋莖部Ugd基因表現量的差異圖------------------------80
圖 三十五、以real-time PCR分析紅梗芋中未經水分逆境處理之旱芋及水芋根部Ugd基因表現量的差異圖------------------------81
圖 三十六、以real-time PCR分析紅梗芋中未經水分逆境處理之旱芋及水芋球莖Ugd基因表現量的差異圖------------------------82
圖 三十七、以real-time PCR分析紅梗芋中旱芋及水芋Ugd基因表現量的差異總圖------------------------------------------- 83
A.旱芋及水芋CT值比較圖----------------------------- 83
B.旱芋、水芋原始表現量差異圖------------------------83
圖 三十八、以real-time PCR分析紅梗水芋經水分逆境處理(water stress)對葉片Ugd基因表現量的影響---------------------84
圖 三十九、以real-time PCR分析紅梗水芋經水分逆境處理(water stress)對葉片Ugd基因表現量的影響--------------------85
A.水分逆境處理下CT值之變化量-----------------------85
B.葉片表現實際變化量-------------------------------85
圖 四十、以real-time PCR分析紅梗水芋經水分逆境處理 (water stress)對莖部Ugd基因表現量的影響---------------------86
圖 四十一、以real-time PCR分析紅梗水芋經水分逆境處理(water stress)對莖部Ugd基因表現量的影響--------------------87
A.水分逆境處理下CT值之變化量-----------------------87
B.莖部表現實際變化量-------------------------------87
圖 四十二、以real-time PCR分析紅梗水芋經水分逆境處理(water stress)對根部Ugd基因表現量的影響--------------------88
圖 四十三、以real-time PCR分析紅梗水芋經水分逆境處理(water stress)對根部Ugd基因表現量的影響---------------------89
A.水分逆境處理下CT值之變化量-----------------------89
B.根部表現實際變化量-------------------------------89
圖 四十四、以real-time PCR分析紅梗水芋經水分逆境處理(water stress)對球莖Ugd基因表現量的影響--------------------90
圖 四十五、以real-time PCR分析紅梗水芋經水分逆境處理(water stress)對球莖Ugd基因表現量的影響---------------------91
A.水分逆境處理下CT值之變化量-----------------------91
B.球莖表現實際變化量-------------------------------91
表 索 引
表 一、真核生物中UDP-glucose dehydrogenase之來源及基因片段大小----------------------------------------------------- 64
表 二、真核生物中Ugd基因於不同表達系統所表達之蛋白及酵素活性分析之比較--------------------------------------------- 65
1. Amino, S.I., Takeuchi, Y. and Komamine, A. (1985) Changes in enzyme activities involved in formation and interconversion of UDP-sugars during the cell cycle in a synchronous culture of Catharanthus roseus. Physiol. Plant. 64: 111-117.
2. Arrecubiet, A.C., Lopez, R. and Garcia, E. (1994) Molecular characterization of cap3A, a gene from the operon required for the synthesis of the capsule of Streptococcus pneumoniae type 3: sequencing of mutations responsible for the unencapsulated phenotype and localization of the capsular cluster on the pneumococcal chromosome. Journal of Bacteriology. 176(20): 6375-6383.
3. Arrecubieta, C., Garcia, E. and Lopez, R. (1996) Demonstration of UDP-glucose dehydrogenase activity in cell extracts of Escherichia coli expressing the pneumococcal cap3A gene required for the synthesis of type 3 capsular polysaccharide. Journal of Bacteriology. 178(10): 2971-2974.
4. Benevolenskaya, E.V., Frolov, M.V. and Birchler, J.A. (1998) The sugarless mutation affects the expression of the white eye color gene in Drosophila melanogaster. Mol Gen Genet. 260: 131-143.
5. Bosch, M., Knudsen, J.S., Derksen, J. and Mariani, C. (2001) Class Ⅲ pistil-specific extensin-like proteins from tobacco have characteristics of arabinogalactan proteins. Plant Physiology. 125: 2180-2188.
6. Campbell, R.E., Mosimann, S.C., Rijn, I.V.D., Tanner, M.E. and Strynadka, N.C.J. (2000) The first structure of UDP-glucose dehydrogenase reveals the catalytic residues necessary for the two-fold oxidation. Biochemistry. 39: 7012-7023.
7. Champagne, M.M. and Kuehnle, A.R. (2000) An effective method for isolating RNA from tissues of Dendrobium. Lindleyana. 15(3): 165-168.
8. Chang, K.W., Weng, S.F. and Tseng, Y.H. (2001) UDP-glucose dehydrogenase gene of xanthomonas campestris is required for virulence. Biochemical and Biophysical Research Communications. 287: 550-555.
9. Chen, C.G., Pu, Z.Y., Moritz, R.L., Simpson, R.J., Bacic, A., Clarke, A.E. and Mau, S.L. (1994) Molecular cloning of a gene encoding an arabinogalactan-protein from pear (Pyrus communis) cell suspension culture. Proc. Natl. Acad. Sci. USA. 91: 10305-10309.
10. Clifford, S.C., Arndt, S.K., Popp, M. and Jones, H.G. (2002) Mucilages and polysaccharides in Ziziphus species (Rhamnaceae): localization, composition and physiological roles during drought-stress. Journal of Experimental Botany. 53(366): 131-138.
11. Dougherty, B.A. and Rijn, I.V.D. (1993) Molecular characterization of hasB from an operon required for hyaluronic acid synthesis in group a streptococci. The Journal of biological Chemistry. 268(10): 7118-7124.
12. Driouich, A., Faye, L. and Staehelin, L.A. (1993) The plant Golgi apparatus: a factory for complex polysaccharides and glycoproteins. Elsevier Science Publishers. 210-214.
13. Du, H., Simpson, R.J., Clarke, A.E. and Bacic, A. (1996) Molecular characterization of a stigma-specific gene encoding an arabinogalactan-protein (AGP) from Nicotiana alata. The Plant Journal. 9(3): 313-323.
14. Gaosong, J., Ramsden, L. and Corke, H. (1997) Effect of water-soluble non-starch polysaccharides from taro on pasting properties of starch. Starch/Starke. 49(7/8): 259-261.
15. Gaspar, Y., Johnson, K.L., McKenna, J.A., Bacic, A. and Schultz, C.J. (2001) The complex structures of arabinogalactan-protein and the journey towards understanding function. Plant Molecular Biology. 47: 161-176.
16. Haerry, T.E., Heslip, T.R., Marsh, J.L. and O''Connor, M.B. (1997) Defects in glucuronate biosynthesis disrupt Wingless signaling in Drosophila. Development. 124: 3055-3064.
17. Hempel, J., Perozich, J., Romovacek, H., Hinich, A., Kuo, I. and Feingold, D.S. (1994) UDP-glucose dehydrogenase from bovine liver: Primary structure and relationship to other dehydrogenases. Protein Science. 3: 1074-1080.
18. Hwang, H.Y. and Horvitz, H.R. (2002) The Caenorhabditis elegans vulval morphogenesis gene sqv-4 encodes a UDP-glucose dehydrogenase that is temporally and spatially regulated. Proc. Natl. Acad. Sci. USA. 99(2): 14224-14229.
19. Janine-Sherrier, D., Prime, T.A. and Dupree, P. (1999) Glycosylphosphatidylinositoi-anchored cell-surface proteins from Arabidopsis. Electrophoresis. 20: 2027-2035.
20. Jiang, G. and Ramsden, L. (1999) Characterisation and yield of the arabinogalactan-protein mucilage of taro corms. Journal of the Science of Food and Agriculture. 79: 671-674.
21. Johansson, H., Sterky, F., Amini, B., Lundeberg, J. and Kleczkowski, L.A. (2002) Molecular cloning and characterization of a cDNA encoding poplar UDP-glucose dehydrogenase, a key gene of hemicellulose/pectin formation. Biochimica et Biophysica Acta. 1576: 53-58.
22. Kavanagh, K.L., Klimacek, M., Nidetzky, B. and Kilson, D.K. (2002) Crystal structure of Pseudomonas fluorescens mannitol 2-dehydrogenase binary and ternary complexes. The Journal of Biological Chemistry. 277(45): 43433-43442.
23. Li, S.X. and Showalter, A.M. (1996) Cloning and developmental / stress-regulated expression of a gene encoding a tomato arabinogalactan protein. Plant Molecular Biology. 32: 641-652.
24. Majewska-Sawka, A. and Nothnagel, E.A. (2000) The multiple roles of arabinogalactan protein in plant development. Plant Physiol. 122(1): 3-10.
25. Mau, S.L., Chen, C.G., Pu, Z.Y., Moritz, R.L., Simpson, R.J., Bacic, A. and Clarke, A.E. (1995) Molecular cloning of cDNAs encoding the protein backbones of arabinogalactan-proteins from the filtrate of suspension-cultured cells of Pyrus communis and Nicotiana alata. The Plant Journal. 8(2): 269-281.
26. Oxley, D. and Bacic, A. (1999) Structure of the glycosylphosphatidylinositol anchor of an arabinogalactan protein from Pyrus communis suspension-cultured cells. Proc. Natl. Acad. Sci. USA. 96(25): 14246-14251.
27. Ramsden, L. and Ling, C.Y. (1998) Variability of non-starch polysaccharides in taro. Trop. Agric. (Trinidad). 75(2): 291-292.
28. Reinke, L.A., Moyer, M.J. and Notley, K.A. (1986) Diminished rates of glucuronidation and sulfation in perfused rat liver after chronic ethanol administration. Biochemical Pharmacology. 35(3): 439-447.
29. Ridley, W.P., Houchins, J.P. and Kirkwood, S. (1975) Mechanism of action of uridine diphosphoglucose dehydrogenase. The Journal of Biological Chemistry. 250(22): 8761-8767.
30. Robertson, D., Beech, I. and Bolwell, G.P. (1995) Regulation of the enzymes of UDP-sugar metabolism during differentiation of french bean. Phytochemistry. 39(1): 21-28.
31. Schultz, C.J., Johnson, K.L., Currie, G. and Bacic, A. (2000) The classical arabinogalactan protein gene family of Arabidopsis. The Plant Cell. 12: 1751-1767.
32. Schulz, M. and Weissenbock, G. (1988) Three specific UDP-glucuronate: flavone-glucuronosyl transferases from primary leaves of Secale cereale. Phytochemistry. 27(5): 1261-1267.
33. Seitz, B., Klos, C., Wurm, M. and Tenhaken, R. (2000) Matrix polysaccharide precursors in Arabidopsis cell walls are synthesized by alternate pathways with organ-specific expression patterns. The Plant Journal. 21(6): 537-546.
34. Spicer, A.P., Kaback, L.A., Smith, T.J. and Seldin, M.F. (1998) Molecular cloning and characterization of the human and mouse UDP-glucose dehydrogenase genes. The Journal of Biological Chemistry. 273(39): 25117-25124.
35. Stewart, D.C. and Copeland, L. (1999) Kinetic properties of UDP-glucose dehydrogenase from soybean nodules. Plant Science. 147: 119-125.
36. Suelter, C.H. (1985) A practical guide to enzymology. John Wiley and Sons. New York. pp.51-52.
37. Tenhaken, R. and Thulke, O. (1996) Cloning of an enzyme that synthesizes a key nucleotide sugar precursor of hemicellulose biosynthesis from soybean: UDP-glucose dehydrogenase. Plant Physiol. 112: 1127-1134.
38. Toyoda, H., Kinoshita-Toyoda, A., Fox, B. and Selleck, S.B. (2000) Structural analysis of glycosaminoglycans in animals bearing mutations in sugarless, sulfateless, and tout-uelu. The Journal of Biological Chemistry. 275(29): 21856-21861.
39. Turner, W. and Botha, F.C. (2002) Purification and kinetic properties of UDP-glucose dehydrogenase from sugarcane. Archives of Biochemistry and Biophysics. 407: 209-216.
40. Walsh, E.C. and Stainier, D.Y.R. (2001) UDP-glucose dehydrogenase required for cardiac valve formation in zebrafish. Science. 293: 1670-1673.
41. Western, T.L., Burn, J., Tan, W.L., Skinner, D.J., Martin-McMaffrey, L., Moffatt, B.A. and Haughn, G.W. (2001) Isolation and characterization of mutants defective in seed coat mucilage secretory cell development in Arabidopsis. Plant Physiology. 127: 998-1011.
42. Willats, W.G.T., McCartney, L. and Knox, J.P. (2001) In-situ analysis of pectic polysaccharides in seed mucilage and at the root surface of Arabidopsis thaliana. Planta. 213: 37-44.
43. Willett, C.S. and Burton, R.S. (2002) Proline biosynthesis genes and their regulation under salinity stress in the euryhaline copepod Tigriopus californicus. Comparative Biochemistry and Physiology Part B. 132: 739-750.
44. Yariv, B.J., Rapport, M.M. and Graf, L. (1962) The interaction of glycosides and saccharides with antibody to the corresponding phenylazo glycosides. Biochem. J. 85: 383-388.
45. Yariv, B.J., Lis, H. and Katchalski, E. (1967) Precipitation of arabic acid and some seed polysaccharides by glycosylphenylazo dyes. Biochem. J. 105: 1c-2c.
46. Youl, J.J., Bacic, A. and Oxley, D. (1998) Arabinogalactan-proteins from Nicotiana alata and Pyrus communis contain glycosylphosphatidylinositol membrane anchors. Proc. Natl. Acad. Sci. USA. 95: 7921-7926.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top