跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.175) 您好!臺灣時間:2024/12/09 22:30
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林啟弘
研究生(外文):Lin Chi Hung
論文名稱:紅豆水煮過程中子葉組織理化特性變化之研究
論文名稱(外文):Changes in the Physicochemical Properties of Adzuki Cotyledon Tissues During Cooking Processes
指導教授:黃卓治黃卓治引用關係陳和賢陳和賢引用關係
指導教授(外文):C. H. HwrongH. C. Chang
學位類別:碩士
校院名稱:國立屏東科技大學
系所名稱:食品科學系
學門:農業科學學門
學類:食品科學類
論文種類:學術論文
論文出版年:2003
畢業學年度:91
語文別:中文
論文頁數:110
中文關鍵詞:紅豆掃描式電子顯微鏡傅立葉遠紅外光分析儀子葉細胞主成分分析法果膠質區分
外文關鍵詞:Adzuki beanScanning Electron MicroscopeSEMFourier Transform Infra-red SpectroscopyFTIRcotyledon cellsPrincipal Component AnalysisPCApectin fraction
相關次數:
  • 被引用被引用:12
  • 點閱點閱:1779
  • 評分評分:
  • 下載下載:203
  • 收藏至我的研究室書目清單書目收藏:2
本論文主要探討紅豆水煮過程之理化特性的變化,分為兩個部分。第一部份探討不同條件下水煮過程,紅豆子葉組織質地特性、化學成分及顯微觀察之間的關係。加熱使得水溶性物質流失、降低果膠質含量及組織硬度,增加色澤、游離澱粉含量及豆粒水分。果膠質區分實驗顯示,子葉組織內冷螯合劑可溶性果膠質(CHP)比熱水可溶性及熱酸可溶性果膠質(HWP & HAP)快速溶解,總果膠質含量損失約66~68%。掃描式電子顯微鏡(SEM)觀察顯示,子葉組織加熱到90℃時才產生型態上的變化。光學顯微鏡切片染色觀察顯示,蛋白質變性改變糊化澱粉顆粒的型態,形成不規則形狀變形。因此豆沙顆粒的形成是經由蛋白質變性、細胞內澱粉的糊化,中膠層果膠物質的溶解而成。
第二部分探討紅豆子葉組織在不同溶液下烹煮(硬化及軟化處理),細胞壁物質及微細結構的關係。紅豆處理為1) 鈣鹽(0.1%、0.5%及1.0%)水煮及10 % 糖液水煮處理,為硬化因子組 2) 去離子水水煮及0.1 % 碳酸鈉水溶液水煮處理,為軟化因子組,去離子水浸漬及經酸鹼處理後的子葉細胞為對照組。質地分析、主要成分化學分析、電子顯微鏡(SEM)及傅立葉紅外光分析儀(FTIR)使用於紅豆子葉細胞壁變化的研究。熱處理時子葉組織因中膠層果膠物質β-脫去反應的作用而分解,子葉細胞分離。顯微觀察顯示軟化處理者,子葉組織間中膠層溶解,子葉細胞分離,硬化處理者細胞壁外層中膠層黏著有增強現象,所有處理法之子葉細胞均保持完整,以EDS能量光譜儀分析顯示鈣離子及鈉離子分布於細胞壁外層。FTIR圖譜顯示硬化處理者細胞壁成分留存一些酯類吸收峰,主成分分析法(PCA)分析結果,前三個主成分(PCs)可以解釋93%以上的總變異量, PC3是區別細胞壁物質的主成分因子。
The investigation on the changes in the physicochemical properties of adzuki cotyledon tissues during cooking processes were carried out in this experiment. In the first-part study, the relationships among the textural properties, the chemical components and the microstructure of the adzuki beans cotyledon tissues during cooking in various conditions were discussed. Heating resulted in the loss of water-soluble materials, decreased the pectin substances and the tissues firmness, but increased colour of cooked beans, the free starch content and bean moisture. The results of pectin fractions showed that cold hexametaphosphate -soluble pectin (CHP) of cotyledon tissues is degraded faster than hot water- soluble pectin (HWP) and hot acid-soluble pectin (HAP). The total pectin content lost about 66~68%. Scanning electron microscopy (SEM) showed that the cotyledon tissues of adzuki bean were morphologically changed by heating until 90℃.For light microscopic observations, semi-thin sections were cut and stained. Protein body were found to be denatured and covered the gelatinization starch granules. The gelatinization starch granules inside cotyledon cell showed an irregular shape. It was found that the formation of Ann granules involves protein denaturation, starch gelatinization inside cells, and pectin substances degraded in the middle lamella.
The second-part investigation was the relationships between cell wall materials and the microstructure of the adzuki beans cotyledon tissues during cooking in different solutions(harden or soften treatments). Adzuki bean was treated by 1) cooked in calcium salt(0.1%, 0.5% and 1.0%) and 10% sugar solution, as a group for the harden bean. 2)cooked in deionized water and sodium carbonate solutions, as the other group of soften bean. Bean soaked in deionized water and treated with acid and alkaline were prepared as the control. The textural and chemical analysis、Scanning Electron Microscopy (SEM) and Fourier Transform Infra-red spectroscopy(FTIR) were used to study the changes of cotyledon cell walls. During heat treatment, the pectin substances in the middle lamella were degraded by the way of β-elimination, the cotyledon cells were then separated from each other. Softening treated beans showed a breakdown of the middle lamella, while hardening treated beans resulted in the strengthening of middle lamella. The cotyledon cell walls of softening and hardening treated beans remained intact. Energy dispersive spectrometer(EDS)showed that the calcium ions and the sodium ions distributed around the outer layer of cell wall. FTIR spectra indicated that the wall residues in the hardening treated beans remained in the form of ester linkage. Principal component analysis(PCA)showed that the first three principal components (PCs) explained more than 93% of the total variance of the system. PC3 is the principal factors for differentiation of the cell wall materials.
目錄
頁次
中文摘要--------------------------------------------------Ⅰ
英文摘要--------------------------------------------------Ⅱ
誌謝------------------------------------------------------Ⅲ
目錄------------------------------------------------------Ⅳ
圖表索引--------------------------------------------------Ⅶ
壹、序言---------------------------------------------------1
貳、文獻回顧-----------------------------------------------5
一、紅豆的主要成分與豆沙形成之機制-------------------------5
(一)紅豆的細胞壁物質的分析-------------------------------5
(二)加熱過程紅豆子葉細胞主要結構上的變化-----------------7
二、植物的細胞壁組織結構----------------------------------11
三、植物組織內果膠質的特性--------------------------------16
(一)果膠質的結構----------------------------------------16
(二)果膠質與金屬離子的結合------------------------------18
(三)果膠質化學特性對植物體質地的影響--------------------20
四、硬豆形成之原因----------------------------------------22
五、紅外光譜圖鑑別細胞壁物質的變化------------------------25
(一)紅外光譜圖應用於細胞壁物質的測定--------------------25
1.原理及組成-----------------------------------------25
2.FTIR 應用於細胞壁物質的分析------------------------28
(二)FTIR光譜圖結合多變量分析鑑別或區分食品物理化學
特性的方法------------------------------------------31
參、材料與方法--------------------------------------------38
一、試驗材料----------------------------------------------38
(一)原料------------------------------------------------38
(二)化學藥品--------------------------------------------38
(三)儀器設備--------------------------------------------39
二、試驗方法----------------------------------------------39
(一)原料前處理-----------------------------------------39
1.不同條件熱處理及豆沙的製備------------------------40
2.紅豆水煮過程(硬化及軟化處理)--------------------40
(二)物理特性之測定-------------------------------------40
1.硬度的測定----------------------------------------40
2.豆粒臍部寬度--------------------------------------41
3.色澤的測定----------------------------------------41
4.游離物質含量測定----------------------------------41
5.粘度測定------------------------------------------42
6.豆粒破損率----------------------------------------42
7.細胞壁物質的分離----------------------------------42
8.顯微觀察------------------------------------------43
(1)掃描式電子顯微鏡-------------------------------43
(2)光學顯微鏡-------------------------------------44
(三)化學特性之測定-------------------------------------44
1.子葉細胞的單離------------------------------------44
2.果膠之萃取及區分----------------------------------45
3.AIS 中果膠質酯化度之測定--------------------------46
4.膳食性纖維的測定----------------------------------47
5.粗纖維的測定--------------------------------------47
5.傅立葉紅外線光譜儀測定----------------------------48
(四)統計分析-------------------------------------------48
肆、結果與討論-------------------------------------------49
一、紅豆水煮過程之理化特性及顯微觀察---------------------49
(一)紅豆在不同條件水煮過程中細胞組織理化特性的變化-----49
1.加熱對紅豆組織物理性狀之影響----------------------49
2.加熱對豆沙色澤之影響------------------------------50
3.加熱對豆沙步留之影響------------------------------50
4.加熱對粘度及游離物質逸出之影響--------------------51
5.加熱過程中果膠質之變化----------------------------54
(二)不同加熱條件下之顯微觀察---------------------------56
1.掃描式電子顯微鏡觀察------------------------------56
2.光學顯微鏡觀察------------------------------------56
(三)結論-----------------------------------------------60
二、紅豆水煮(硬化及軟化處理)子葉組織細胞壁物質理化特
性與微細結構的變化---------------------------------61
(一)不同溶液水煮紅豆細胞組織理化特性的變化-------------61
1.質地之變化----------------------------------------61
2.組織結構內主要成分的變化--------------------------64
3.光學及電子顯微鏡觀察------------------------------70
(1)細胞壁物質的顯微鏡觀察-------------------------70
(2)掃描式電子顯微鏡觀察---------------------------71
(3)能量光譜儀的觀察-------------------------------72
(二)以紅外光線光譜儀探討加熱處理細胞壁結構的變化-------79
1.紅外光線圖譜的分析--------------------------------79
2.紅豆細胞壁物質之主成分分析------------------------84
(1)主成分分析-------------------------------------84
(2)硬化豆組主成分分析-----------------------------84
(3)軟化豆組主成分分析-----------------------------89
(4)硬化及軟化豆處理主成分分析---------------------93
3.紅豆細胞壁物質之主成分分析結果--------------------97
(三)結論-----------------------------------------------99
參考文獻------------------------------------------------103
附錄----------------------------------------------------107
作者簡介------------------------------------------------110
參考文獻
1. 毛秀梅,1988,紅豆在浸泡及烹煮過程中,影響其質地變化因子之探討,台大食科所碩士論文。
2. 林翰儒、梁德馨,1994,SAS應用程式之初等統計分析,23:1-51。
3. 林天貴、馮臨惠,1984,紅外線光譜儀在塑膠包裝材料材質鑑定之應用,食品工業,16(2):19-24。
4. 食品組織學,1981,食品形態組織化學的觀察法,徐氏出版社,6:138-149。
5. 徐錦泉、陳玉如、林招蓮,1995,紅豆新品種高雄6號,高雄區農技報導,14:1-4。
6. 姚念周,1996,不同感官標示法之比較,食品工業,28(12):19~25。
7. 陳家全、李家維、楊瑞森,1991,生物電子顯微鏡學,12:211-231。
8. 彭昭英,1998,SAS 與統計分析,儒林圖書有限公司。
9. 張基郁,1990,敏豆莢在烹煮過程中質地變化與果膠質化學變化之相關性及果膠分子間交互作用模式之研究,台大食科所碩士論文。
10. 賴慧芳,1998,利用真空浸入法補充果膠酯酶後再預煮處理以提高胡瓜組織之耐煮性,台大食科所碩士論文。
11. 的場研一,1979,餡,的場製餡所。
12. 火田 井 朝子,1987,小豆の調理特性について,New Food Industry,29(7):57-69。
13. 火田 井 朝子,1981,儲藏溫度、儲藏溼度が各種大納言の加熱特性及ぼす影響,豆類加工技術研究會報,6(5):40-53。
14. Abe, S. 1986. The kneading effects on the texture of sweetened Adzuki Ann(Red Bean Jam)Nippon Shokuhin Kogyo Gakkaishi. 33:693-700.
15. Abe, S. 1987. A modification of the boiled beans for the raw Ann manufacture of Azuki.(Studies on improvement of sweetened Adzuki Ann Part Ⅱ)Nippon Shokuhin Kogyo Gakkaishi. 34:14-19.
16. Asp, N.G., Johansson, C., Hallmer, H. and Siljestrom, M. 1983. Rapid enzymatic assay of insoluble and soluble dietary fiber. J. Agric Food Chem. 31:476-482.
17. Beech, I., Hanjagsit, L., Kalaji, M., Neal, A. L. and Zinkevich, V. 1999. Chemical and structural characterization of exopolymers produced by Pseudomonas sp. NCIMB 2021 in continuous culture. Microbiology 145:1491-1497.
18. Belton, P.S., Kemsley, E.K., McCamm, M.C., Ttofis, S., Wilson, R.H. and Delgadillo, I. 1995. The identification of vegetable matter using Fourier Transform Infrared Spectroscopy. Food Chemistry. 54:437-441.
19. Biliaderis, C.G., Marice, T.J. and Vose, J.R. 1980. Starch gelatinization phenomena studied by differential scanning calorimetry. J. Food Sci. 45: 1669.
20. Blumenkrantz, N. and Asboe-Hansen, G. 1973. New method for quantitative determination of uronic acids. Anal. Biochem. 54:484-490.
21. Burisova, A., Tomaskova, B., Sasinkova, V. and Ebringerova, A. 2001. Isolation and characterization of the non-starch polysaccharides of amaranth seeds. Chem. Pap. 55:254-260.
22. Burr, H.K., Kon, S. and Mprris, H. J. 1968. Cooking rates of dry beans as influenced by moisture content and temperature and time of storage. Food Technol. 22:336-338.
23. Cael, J.J., Gardner, K.H., Koenig, J.L. and Blackwell, J. 1975. Infarred and Raman spectroscopy of carbohydrates. V. Normal coordinate analysis of cellulose I. J. Chem. Phys. 62:1145-1153.
24. Chittur, K. K. 1999. FTIR and protein structure at interfaces. BMES Bulletin. 23:3-9.
25. Christensen, S. H. 1986. Pectins. In “Food Hydrocolloids” ed. Glicksman, M. Vol. Ⅲ.p. 205 CRC press, Inc. Florida.
26. Coimbra, M.A., Barros, A., Rutledge,D.N. and Delgadillo, I. 1999. FTIR spectroscopy as a tool for the analysis of olive pulp cell-wall polysaccharide extracts. Carbohydrate Research. 317:145-154.
27. Coimbra, M.A., Barros, A., Barros, M., Rutledge,D.N. and Delgadillo, I. 1998. Multivariate analysis of uronic acid and neutral sugars in whole pectic samples by FT-IR spectroscopy. Carbohydrate Polymers. 37:241-248.
28. Cosgrove, D.J. 1997. Assembly and enlargement of the primary cell wall in plants Annu. Rev. Cell Dev. Biol. 13:171-201.
29. Cosgrove, D.J. 1999. Enzymes and other agents that enhance cell wall extensibility. Annu. Rev. Plant Physiol. Plant Mol. Biol. 50:391-417.
30. Defernez, m., Kemsley, E.K. and Wilson, R.H. 1995. Use of infrared spectroscopy and chemometrics for the authentication of fruit purees. J. Agric Food Chem. 43:109-113.
31. Dhurandhar, N.V. and Chang, K.C. 1990. Effect of cooking on firmness, trypsin inhibitors, lectins and cystine/cysteine content of navy and red kidney beans(Phaseolus vulgaris) J. Food Sci. 55:470-474.
32. Edelmann, A., Diework, J., Schuster, K.C. and Lendl, B. 2001. Rapid method for the discrimination of red wine cultivars based on mid-infrared spectroscopy of phenolic wine extracts. J. Agric Food Chem. 49:1139-1145.
33. Fagard, M., Desnos, T., Desprez, T., Goubet, F., Refregier, G., Mouille, G., McCann, M., Rayon, C., Vemhettes, S. and Hofte, H. 2000. PROCUSTE1 encodes a cellulose synthase required for normal cell elongation specifically in roots and dark-grown hypocotyls of arabidopsis. The Plant Cell. 12:2409-2423.
34. Fillipov, M.P. 1972. IR spectra of pectin films. J. Appl. Spectrosc. 17:1052-1054.
35. Fujimura, T. and Kugimiya, M. 1993a. Gelatinization of starch inside cotyledon cells of Adzuki bean. Nippon Shokuhin Kogyo Gakkaishi. 40:490-495.
36. Fujimura, T. and Kugimiya, M. 1993b. Gelatinization of starches inside cotyledon tissues of adzuki bean. Nippon Shokuhin Kagaku Kaishi. 40:702-707.
37. Fujimura, T. and Kugimiya, M. 1994. Effects of thermal pre-treatment on gelatinization of starch inside cotyledon cells of adzuki bean. Nippon Shokuhin Kagaku Kaishi. 41:206-209.
38. Fujimura, T. and Kugimiya, M. 1995. Gelatinization of starches inside cotyledon tissues of adzuki bean. Nippon Shokuhin Kagaku Kaishi. 42:14-19.
39. Garcia-Vela, L. A., Del Valle, J.M. and Stanley, D.W. 1991. Hard-to-cook defect in black beans: The effect of soaking in various aqueous salt solutions. Can. Inst. Food Sci. Technol. J. 24:60-67.
40. Gnanasambandam, R. and Proctor, A. 2000. Determination of pectin degree of esterification by diffuse reflectance Fourier transform infrared spectroscopy. Food Chemistry. 68:327-332.
41. Greve, L. C., McArdle, R. N., Gohlke, J. R. and Labavitch, J. M. 1994. Impact of heating on carrot firmness: changes in cell wall components. J. Agric Food Chem. 42:2900-2906.
42. Hahn, D.M., Jones, F. T., Akhavan, I. And Rockland, L. B. 1977. Light and Scanning Electron Microscope Studies on Dry Beans : Intracellular Gelatinization of Starch in Cotyledons of Large Lima Beans(PHASEOLUS LUNATUS). J. Food Sci. 42:1208-1212.
43. Hatfield, R. 1996. Biochemical strategies for improving alfalfa utilization in dairy production. U.S. Dairy Forage Research Center, Informational Conference with Dairy and Forage Industries. Improving Alfalfa Utilization. 15~21.
44. Hesse, M., Meier, H. and Zeeh, B. 1991. Infrarotund Raman-Spektren. In Spektroskopische Methoden in der Organischen Chemie;Thieme:Stuttgart, Germany.
45. Hohlberg A. I. and Stanley D. W. 1987. Hard-to-cook defect in black beans. Protein and starch considerations. J. Agric Food Chem. 35:571-576.
46. Hsieh, H.M., Pomeranz, Y. and Swanson, B.G. 1992. Composition, cooking time, and maturation of Azuki(Vigna angularis)and common beans (Phaseolus vulgaris). Cereal Chemistry. 69:244-248.
47. Hsieh, H.M., Swanson, B.G. and Lumpkin, T.A. 1999. Starch gelatinization and microstructure of azuki An granules prepared from whole, abraded, or ground beans. Lebensm.-Wiss. u.-Technol. 32:469-480.
48. Hudson, J.M. and Buescher, R.W. 1986. Relationship between degree of pectin methylation and tissue firmness of cucumber pickles. J. Food Sci. 51:138-140.
49. Hughes, J.S., Acevedo, E., Bressani, R. and Swanson, B.G. 1996. Effects of dietary fiber and tannins on protein utilization in dry beans(Phaseolus vulgaris). Food Research International. 29:331-338.
50. Jarvisa, M.C. and McCannb, M.C. 2000. Macromolecular biophysics of the plant cell wall: Concepts and methodology. Plant Physiol. Biochem. 38:1-13.
51. Jones, P.M.B. and Boulter, D. 1983. The cause of reduced cooking rate in Phaseolus vulgaris following adverse storage conditions. J. Food Sci. 48:623-626.
52. Joslyn, M. A. 1962. The chemistry of protopectin:A critical review of historical data and recent developments. Adv. Food Res. 11:1-12.
53. Kacurakova, M., Belton, P.S., Wilson, R.H., Hirsch, J. and Ebringerova, A. 1998. Hydration properties of xylan-type structures: An FTIR study of xylooligosaccharides. J. Sci. Food Agric. 77:38-44.
54. Kataoka, Y. and Kondo, T. 1998. FT-IR microscopic analysis of changing cellulose crystalline structure during wood cell wall formation. Macromolecules. 31:760-764.
55. Keijbets, M.J.H. and Pilnik, W. 1974. β-Elimination of pectin in the presence of anions and cations. Carbohydrate Res. 33:359-362.
56. Kethireddipalli, P., Hung, Y.C., Phillips, R.D. and Mcwatters, K.H. 2002. Evaluating the role of cell wall material and soluble protein in the functionality of cowpea(Vigna unguiculata)pastes. J. Food Sci. 67:53-59.
57. Klavons, J.A. and Bennett, R.D. 1986. Determination of methanol using alcohol oxidase and its application to methyl ester content of pectins. J. Agric. Food Chem. 34:597-599.
58. Kong, C.S., Ogawa, H. and Iso, N. 1999. Compression properties of fish-meat gel as affected by gelatinization of added starch. J. Food Sci. 62:283-286.
59. Kugimiya, M. 1990. Separation of cotyledon cells of legumes by successive treatments with acid and alkali. Nippon Shokuhin Kagaku Kaishi. 37:867-871.
60. Kugimiya, M. 1992. Effecys of cooking conditions on rupture and damage of Ann granules (Denatured cotyledon cells)in cooked adzuki beans. Nippon Shokuhin Kogyo Gakkaishi. 39:167-172.
61. Lai, Y.W., Kemsley, E.K. and Wilson, R.H. 1994. Potential of Fourier Transform Infrared Spectroscopy for the authentication of vegetable oils. J. Agric Food Chem. 42:1154-1159.
62. Lecain, S., Ng, A., Parker, M.L., Smith, A.C. and Waldron, K.W. 1999. Modification of cell-wall polymers of onion waste — Part Ⅰ. Effect of pressure-cooking. Carbohydrate Polymers. 38:59-67.
63. Li, B.W. 1995. Determination of total dietary fiber in foods and food products by using a single-enzyme, enzymatic-gravimetric method: Interlaboratory study. Journal of the AOAC International. 78:1440-1444.
64. Liu, K., Dixon Phillips, R., Hung Y., Shewfelt, R.L. and Mcwatters, K.H. 1992. Hard-to-cook defect in cowpeas : Storage-induced and treatment- induced development. J. Food Sci. 57:1155-1160.
65. Liu, K., Dixon Phillips, R. and Mcwatters, K.H. 1993. Induced hard-to-cook state in cowpeas by freeze-thawing and calcium chloride soaking. Cereal Chem. 70:193-195
66. Marry, M., McCann, M.C., Kolpak, F., White, A.R., Stacey, N.J. and Roberts, K. 2000. Extraction of pectic polysaccharides from sugar-beet cell walls. J. Sci. Food Agric. 80:17-28.
67. Mattson, S. 1946. The cookability of yellow peas: A colloid-chemical and biochemical study. Acta Agric. Suec. 2:185-231.
68. Michikawa, K., Kobayashi, R. and Watanabe, T. 1992. Comparison of physical and chemical properties of “An”(Bean Jam)prepared from Otebo(Phaseolus vulgaris)and Oshirohana(Phaseolus coccineus).Nippon Shokuhin Kogyo GakKaishi. 39:663-670.
69. Michikawa, K., Kobayashi, R. and Watanabe, T. 1992. Microscopic observation of “An” particales prepared from Phaseolus group and their morphological changes by treating with cellulase. Nippon Shokuhin Kogyo GakKaishi. 39:671-677.
70. Moscoso, W. Bourne, M.C. and Hood, L.F. 1984. Relationships between the Hard-to-Cook phenomenon in red kidney beans and water absorption, puncture force, pectin, phytic acid, and minerals. J. Food Sci. 49:1577-1583
71. Naumann, D. 2000. Infrared Spectroscopy in Microbiology. Encyclopedia of Analytical Chemistry R.A. Meyers (Ed.) 102-131
72. Ng, A., Parker, M.L., Smith, A.C. and Waldron, K.W. 1999. Modification of cell-wall polymers of onion waste — Part Ⅱ. Effect of divalent cations. Carbohydrate Polymers. 38:69-76.
73. Ng, A. and Waldron, K. W. 1997. Effect of steaming on cell wall chemistry of potatoes(Solanum tuberosum Cv. Bintje) in relation to firmness. J. Agric. Food Chem. 45:3411-3418.
74. Ogawa, T., Abe, S. and Kugimiya, M. 1983. Gelatinization of starch in dried azuki Ann granules. Nippon Shokuhin Kagaku Kaishi. 30:323~329.
75. Plhak, L.C., Caldwell, K.B., and Stanley, D.W. 1989. Comparison of methods used to characterize water imbibition in Hard-to-Cook beans. J. Food Sci. 49:326-329.
76. Raab, T.K., Vogel, J. and Somerville, S. Novel molecular mechanisms of disease susceptibility in plants─an FTIR study of Arabidopsis thaliana. Plant cell (in review, 2002)
77. Richardson, J.C. and Stanley, D.W. 1991. Relationship of loss of membrane functionality and hard-to-cook defect in aged beans. J. Food Sci. 56:590-591.
78. Sajjaanantakul, T., Van Buren, J.P. and Downing, D.L. 1989. Effect of methyl ester content on heat degradation of chelator-soluble carrot pectin. J. Food Sci. 54:1272-1277.
79. Sefa-dedeh, S., Stanley, D.W. and Voisey P.W. 1978. Effects of soaking time and cooking conditions on texture and microstructure of cowpeas(Vigna unguiculata). J. Food Sci. 43:1832-1838.
80. Shellie K.C. and Hosfield G.L. 1991. Genotype ×environmental effects on food quality of common bean: resource-efficient testing procedures. J. Am.Soc. Hort. Sci. 116:732-736.
81. Shomer, I. 1995. Swelling behaviour of cell wall and starch in potato(Solanum tuberosum L.)tuber cell — Ⅰ. Starch leakage and structure of single cells. Carbohydrate Polymer. 26:47-54.
82. Slocum, R.D. and Roux S.J. 1982. An improved method for the subcellul- ar localization of calcium using a modification of the antimonite precipit- ation technique. J. Histochem. Cytochem. 30:617-629
83. Sørensen, S.O., Pauly, M., Bush, M., Skjøt, M., McCamm, M.C., Borkhardt, B. and Ulvskov, P. 2000. Pectin engineering: Modification of potato pectin by in vivo expression of an endo-1,4-β-D-galactanase. Proc. Natl. Acad. Sci. USA. 97:7639-7644
84. Stanley D.W. 1991. Biological membrane deterioration and associated quality losses in food tissues. CRC Crit. Rev. Food Sci. Nutr. 30:487-553.
85. Stanley D.W. and Aguilera JM. 1985. A review of textural defects in cooked reconstituted legumes — the influence of structure and composition. J. Food Biochem. 9:277-323.
86. Stassart, J. M., Neirinckx, L. and Deajefere, R. 1981. The interactions between monovalent cations and calcium during their absorption on isolated cell walls and absorption by intact barley roots. Ann. Bot. 47:647.
87. Su, H.L. and Chang, K.C. 1995. Physicochemical and sensory properties of dehydrated bean paste products as related to bean varieties. J. Food Sci. 60:794-814.
88. Thierry G. and François L. 2002. Role of dietary fibre in rabbit nutrition and in digestive troubles prevention 2nd Rabbit Congress of the America, Habana City, Cuba.
89. Van Buren, J.P. 1968. Adding calcium to snap beans at different stages in processing. Calcium uptake and texture of the canned product. Food Technol. 22:790-793.
90. Van Buren, J.P., Bourne, M., Downing, D., Queale, D., Chase, E. and Comstock, S. 1986. Processing factors influencing splitting and other quality characteristics of canned kidney beans. J. Food Sci. 51:1228-1230.
91. Van Buren, J. P. 1979. The chemistry of texture in fruit and vegetables. J. Texture Studies. 10:1.
92. Van Buren, J. P. 1983. Two effects of sodium chloride causing softening of the texture of canned snap beans. J. Food Sci. 48:1362.
93. Van Buren, J. P. 1984. Effects of salts added after cooking on the texture of canned snap beans. J. Food Sci. 49: 910-912.
94. Van Buren, J. P., Kean, W. P., Gavitte,B. K. and Sajjaanantakul, T. 1990. Effects of salts and pH on heating-related softening of snap beans. J. Food Sci. 55: 1312.
95. Van Soest, J. P., Robertson, J.B. and Lewis, B.A. 1991. Methods for dietary fiber, neutral detergent fiber, and non starch polysaccharides in relation to animal nutrition. J. Dairy Sci. 74: 3583-3597.
96. Vogel, J., Raab, T.K., Schiff, C., Somerville, S. 2002. "PMR6, a pectate lyase-like gene required for powdery mildew susceptibility in Arabidopsis," Plant Cell (in review, 2002).
97. Waldron, K. W. 1998. Improving the cooking quality of grain legumes and their products in Kenya and Cameroon. Summary reports of European Commission supported STD-3 projects(1992-1995)100-103.
98. Walkinshaw, M. D. and Arnott, S. 1981. Conformations and interactions of pectins.(Ⅰ)x-ray diffraction analyses of sodium pectate in neutral and acidified forms. J. Mol. Biol. 153:1055-1062.
99. Wellner, N., Kacurakova, M., Malovikova, A., Wilson, R.H., and Belton, P.S. 1998. FT-IR study of pectate and pectinate gels formed by divalent cations. Carbohydr. Res. 308:123—131.
100.http://nic.savba.sk/sav/inst/chem/intro.html.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top