跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.89) 您好!臺灣時間:2024/12/13 13:06
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林峰正
研究生(外文):Feng-Cheng Lin
論文名稱:以一個有效之啟發式演算法解決排程問題
論文名稱(外文):An Effective Heuristic Algorithm for Solving Scheduling Problems
指導教授:蔡正發蔡正發引用關係
指導教授(外文):Cheng-Fa Tsai
學位類別:碩士
校院名稱:國立屏東科技大學
系所名稱:資訊管理系
學門:電算機學門
學類:電算機一般學類
論文種類:學術論文
論文出版年:2003
畢業學年度:91
語文別:中文
論文頁數:143
中文關鍵詞:組合最佳化排程基因演算法塔布搜尋法模擬退火法
外文關鍵詞:JSPOSPFSPgenetic algorithmtabu searching algorithmsimulated annealing algorithm
相關次數:
  • 被引用被引用:1
  • 點閱點閱:750
  • 評分評分:
  • 下載下載:72
  • 收藏至我的研究室書目清單書目收藏:0
排程問題是最著名的組合最佳化問題之一。針對傳統的最佳解搜尋法,會隨著問題的增大而形成指數型的長時間運算,相當不易的使用在現實生活中。而現代計算式智慧的方法已廣泛的被使用到解決諸如此類的問題。針對所要解決的排程問題而言,本論文以一般文獻上所探討的三大排程問題為探討研究之主題,分別為零工型生產排程問題(JSP)、開放型生產排程問題(OSP)與流程型生產排程問題(FSP)。
在解決JSP問題上,本論文針對基因演算法提出修改方法,包括新的優良初始解產生法及一個新的區域搜尋方法。在解決OSP問題上,本論文針對塔布搜尋法解決此問題上提出三個修改的方法,包括一個有效率的初始解產生法、新的鄰居解產生法與區域解改善法。在解決FSP問題上,本論文也提出一個新的解決方法,此方法稱為MNEH _ISA方法;本論文修改NEH方法當作初始解,並在進入ISA步驟之下擷取模擬退火法之概念,提出三種找尋鄰居解的方法。
將實驗結果與之前的諸多文獻作比較,證實本論文所提出的方法,確實可將生產排程的總工作時間作大幅度縮短,成功的將智慧型方法應用於三大排程問題上。
The scheduling problem is a very important issue in combinatorial optimization problems. The traditional searching methods are NP_hard; the time required to solve the problem optimally, increases exponentially with the size of the problem, thus, they are difficult to be used in real life. Nowadays, intelligent computing methods have been extensively used to solve these scheduling problems. This thesis proposes three new and efficient hybrid heuristic schemes for solving job-shop scheduling (JSP), open-shop scheduling (OSP), and flow-shop scheduling problems (FSP), respectively.
A new and efficient population initialization and local search concept, based on genetic algorithm, is introduced to search the solution space and to determine the global minimum solution to JSP. Moreover, a novel population initialization, nearest neighbor, and local search method, based on Tabu Search approach, is introduced to search and determine the global minimum solution to the OSP. In addition, we propose a novel method named MNEH_ISA for FSP. We propose a new algorithm called ISA, which is borrowed the conception from simulated annealing method. The NEH method has been modified to be an initial solution for MNEH_ISA. In MNEH_ISA, we also present three different approaches for searching nearest neighbor additionally. According to our simulation results, the proposed method can minimize the total makespan values and outperform some existing approaches for these shop scheduling problems.
目錄
摘要................................................................................................................I
Abstract ............................................................................................................ II
誌謝............................................................................................................. III
目錄.............................................................................................................IV
圖目錄...................................................................................................... VIII
表目錄....................................................................................................... XII
第1 章緒論..................................................................................................... 1
1.1 研究動機與背景..................................................................................... 1
1.2 研究範疇與目的..................................................................................... 4
1.3 研究流程................................................................................................. 5
1.4 論文架構................................................................................................. 7
第2 章文獻探討............................................................................................. 9
2.1 JSP、OSP、FSP 問題的定義................................................................ 9
2.1.1 JSP 問題的定義................................................................................ 9
2.1.2 OSP 問題的定義............................................................................. 11
2.1.3 FSP 問題的定義............................................................................. 12
2.2 基因演算法於JSP 的應用................................................................... 14
2.2.1 基因演算法的流程........................................................................ 15
2.2.2 基因演算法的編碼說明................................................................ 16
2.2.3 基因演算法構成元件說明............................................................ 18
-VA.
適應性函數(fitness) 與選擇(selection) .................................... 18
B. 交配(crossover)............................................................................. 20
C. 突變(mutation) .............................................................................. 21
2.3 塔布搜尋法於排程問題的應用........................................................... 23
2.3.1 塔布搜尋法的流程........................................................................ 23
2.3.2 塔布搜尋法的編碼方式................................................................ 23
2.3.3 塔布搜尋法的元件說明................................................................ 26
第3 章GA 於JSP 問題的架構與方法........................................................ 29
3.1 論文提出的修改架構........................................................................... 29
3.2 本論文所提出的方法........................................................................... 30
3.2.1 初始化策略方法I.......................................................................... 30
3.2.2 初始化策略方法II ........................................................................ 35
3.2.3 區域搜尋的方法(Local Search method) ....................................... 39
3.3 GA 於JSP 問題的實驗結果................................................................ 41
3.3.1 實驗設定及系統整合.................................................................... 41
3.3.2 Genetic algorithm 環境設定.......................................................... 44
3.3.3 實驗結果與比較-第一部份........................................................... 45
A. 比較初始化方法I .......................................................................... 45
B. 比較初始化方法II ......................................................................... 47
3.3.4 實驗結果與比較-第二部份........................................................... 51
3.3.5 實驗結果與比較-第三部份........................................................... 57
3.3.6 實驗結果與比較-第四部份........................................................... 59
3.3.7 實驗探討........................................................................................ 60
第4 章Tabu 於OSP 問題的方法................................................................ 62
4.1 論文提出的修改架構........................................................................... 62
4.2 論文提出的方法................................................................................... 63
4.2.1 初始化策略方法............................................................................ 64
4.2.2 鄰居解產生法................................................................................ 65
A. 交換搜尋法產生鄰近解................................................................. 68
B. 插入搜尋法產生鄰近解................................................................. 70
4.2.3 區域解改善法................................................................................ 70
4.3 TABU 於OSP 問題的實驗數據............................................................ 74
4.3.1 實驗設備與系統架構.................................................................... 74
4.3.2 修改之Tabu Search 方法的環境設定.......................................... 75
4.3.3 實驗結果與比較-第一部份........................................................... 76
4.3.4 實驗結果與比較-第二部份........................................................... 77
4.3.5 實驗結果與比較-第三部份........................................................... 81
4.3.6 實驗探討........................................................................................ 85
第5 章應用於FSP 的新方法─MNEH_ISA.............................................. 86
5.1 論文提出的新架構(MNEH_ISA)........................................................ 86
5.2 初始化方法的說明(MNEH) ................................................................ 87
5.2.1 NEH 的演算法................................................................................ 87
5.2.2 MNEH 的演算法............................................................................ 88
A. 評估法則的介紹............................................................................. 88
B. MNEH 演算法的流程..................................................................... 89
5.3 MNEH_ISA 方法的說明...................................................................... 90
5.3.1 SA 演算法流程............................................................................... 90
5.3.2 鄰居解搜尋法................................................................................ 92
5.3.3 鄰居解搜尋法策略........................................................................ 93
5.3.4 MNEH_ISA 演算法流程................................................................ 94
5.3.5 MNEH_ISA 演算法概念................................................................ 97
5.4 MNEH_ISA 於FSP 的實驗數據......................................................... 98
5.4.1 實驗設備與系統架構.................................................................... 98
5.4.2 實驗結果與比較-第一部份......................................................... 101
5.4.3 實驗結果與比較-第二部份......................................................... 103
5.4.4 實驗結果與比較-第三部份......................................................... 105
5.4.5 實驗探討...................................................................................... 106
第6 章結論與未來發展............................................................................. 107
參考文獻....................................................................................................... 109
附錄一......................................................................................................... 115
附錄二......................................................................................................... 120
附錄三......................................................................................................... 126
附錄四......................................................................................................... 139
作者簡介....................................................................................................... 142
圖目錄
圖1-1 研究架構圖........................................................................................... 6
圖2-1 針對JSP 問題chromosome 之編碼方式........................................... 10
圖2-2 Decoded active schedule...................................................................... 11
圖2-3 FSP 問題編碼示意圖.......................................................................... 13
圖2-4 Decoded active schedule for FSP ........................................................ 14
圖2-5 一般基因演算法流程圖.................................................................... 15
圖2-6 semi-active decode 甘特圖.................................................................. 17
圖2-7 active decode 甘特圖.......................................................................... 18
圖2-8 exchange mutation method .................................................................. 21
圖2-9 shift change mutation method.............................................................. 21
圖2-10 inversion mutation method ................................................................ 22
圖2-11 Neighborhood search-based mutation method .................................. 22
圖2-12 Tabu search coding table.................................................................... 24
圖2-13 最後的排程表................................................................................... 25
圖2-14 編碼與解碼示意圖.......................................................................... 26
圖2-15 塔布搜尋法的流程圖...................................................................... 28
圖3-1 本研究改善傳統GA 架構圖............................................................. 29
圖3-2 初始化策略演算法............................................................................ 31
圖3-3 初始化策略示意圖............................................................................ 31
圖3-4 染色體表示法..................................................................................... 32
圖3-5 相關的排程表..................................................................................... 32
圖3-6 染色體表示法..................................................................................... 33
圖3-7 相關的排程表..................................................................................... 33
圖3-8 染色體表示法..................................................................................... 33
圖3-9 相關的排程表..................................................................................... 34
圖3-10 最後完成的編碼表.......................................................................... 34
圖3-11 最終完成的排程表........................................................................... 34
圖3-12 排程表初始圖................................................................................... 37
圖3-13 在時間軸為一時的排程圖.............................................................. 37
圖3-14 時間軸為2 時,新增入job1 及job2 示意圖................................ 38
圖3-15 最終的建表....................................................................................... 38
圖3-16 最終的染色體的編碼...................................................................... 38
圖3-17 Local-Search method example........................................................... 39
圖3-18 local search method ........................................................................... 40
圖3-19 本論文的系統架構圖...................................................................... 43
圖3-20 我們所製作的job-shop scheduling system 之系統輸出畫面......... 43
圖3-21 GA 比較Init I 與Init II 於10x10FT 問題....................................... 48
圖3-22 SyGA1 比較Init I 與Init II 於10x10FT 問題................................ 49
圖3-23 SyGA2 比較Init I 與Init II 於10x10FT 問題................................ 49
圖3-24 GA 比較Init I 與Init II 於20x5FT 問題......................................... 50
圖3-25 SyGA1 比較Init I 與Init II 於20x5FT 問題.................................. 50
圖3-26 SyGA2 比較Init I 與Init II 於20x5FT 問題.................................. 51
圖3-27 以GA 方法解決JSP 問題在10x10FT 問題上使用不同策略之效能
比較圖...................................................................................................... 53
圖3-28 以SyGA 1 方法解決JSP 問題在10x10FT 問題上使用不同策略之
效能比較圖.............................................................................................. 54
圖3-29 以SyGA 2 方法解決JSP 問題在10x10FT 問題上使用不同策略之
效能比較圖.............................................................................................. 54
圖3-30 使用MGA_2 策略於GA、SyGA 1、SyGA 2 方法在10x10FT 問
題上的效能比較圖.................................................................................. 55
圖3-31 以GA 方法解決JSP 問題在20x5FT 問題上使用不同策略之效能
比較圖...................................................................................................... 55
圖3-32 以SyGA 1 方法解決JSP 問題在20x5FT 問題上使用不同策略之效
能比較圖.................................................................................................. 56
圖3-33 以SyGA 2 方法解決JSP 問題在20x5FT 問題上使用不同策略之
效能比較圖.............................................................................................. 56
圖3-34 我們所提出的GA 與AS (Colorni et al., 1994)在JSP 問題上針對不
同的benchmark 問題之效能比較.......................................................... 59
圖4-1 本研究的Tabu search 方法流程圖................................................... 63
圖4-2 初始化策略示意圖............................................................................ 65
圖4-3 要徑例子一......................................................................................... 66
圖4-4 要徑例子二......................................................................................... 66
圖4-5 要徑例子三......................................................................................... 67
圖4-6 要徑例子四......................................................................................... 67
圖4-7 要徑例子五......................................................................................... 68
圖4-8 交換鄰居示意圖................................................................................ 69
圖4-9 交換鄰居示意圖................................................................................ 69
圖4-10 插入鄰居示意圖.............................................................................. 70
圖4-11 區域解改善法流程圖....................................................................... 72
圖4-12 local improved method algorithm...................................................... 73
圖4-13 我們所提出之系統架構圖.............................................................. 74
圖4-14 我們所製作的open-shop scheduling system 之系統輸出畫面..... 75
圖5-1 MNEH_ISA 架構圖........................................................................... 86
圖5-2 NEH 演算法........................................................................................ 87
圖5-3 makespan 的評估示意圖................................................................... 88
圖5-4 idle time 的評估示意圖...................................................................... 89
圖5-5 wait time 的評估示意圖..................................................................... 89
圖5-6 MNEH 演算法..................................................................................... 89
圖5-7 SA 演算法........................................................................................... 91
圖5-8 SA 示意圖........................................................................................... 92
圖5-9 swap method ........................................................................................ 92
圖5-10 forward insertion method................................................................... 93
圖5-11 backward insertion method ................................................................ 93
圖5-12 Neighbood_search 演算法................................................................ 94
圖5-13 MNEH_ISA 演算法.......................................................................... 96
圖5-14 MNEH_ISA 求解意識圖................................................................. 98
圖5-15 我們所提出之系統架構圖............................................................... 99
圖5-16 我們所製作的flow-shop scheduling system 之系統輸出畫面.... 100
表目錄
表2-1 Example of 3x3 for JSP ....................................................................... 11
表2-2 Related job, machine, process time ..................................................... 14
表2-3 Transform Table ................................................................................... 25
表2-4 Related job, machine, processing time ................................................ 25
表2-5 External database ................................................................................. 25
表3-1 Candidate list ....................................................................................... 33
表3-2 Candidate list ....................................................................................... 34
表3-3 機器剩餘處理時間加總示意圖........................................................ 36
表3-4 策略搭配表......................................................................................... 43
表3-5 FT 問題的參數設定表........................................................................ 44
表3-6 LA 問題的參數設定........................................................................... 44
表3-7 ORB 問題的參數設定........................................................................ 44
表3-8 6x6FT 問題集中的比較表.................................................................. 45
表3-9 10x10FT 問題集中的比較表.............................................................. 46
表3-10 20x5FT 問題集中的比較表.............................................................. 46
表3-11 Init I 與Init II 的方法用在10x10FT 的問題上............................... 47
表3-12 Init I 與Init II 的方法用在20x5FT 的問題上................................ 47
表3-13 使用GA、SyGA 1、SyGA 2 方法搭配不同策略於JSP 的10x10FT
問題上之效能比較表(最佳解:930) ................................................... 52
表3-14 使用GA、SyGA 1、SyGA 2 方法搭配不同策略於JSP 的20x5FT
問題上之效能比較表(最佳解:1165) ................................................. 53
表3-15 使用我們所提出的GA 方法與其它文獻之方法在各種benchmark
問題上之效能比較.................................................................................. 57
表3-16 使用我們所提出的GA 方法與MGA、SA、GA 方法在各種
benchmark 問題上之效能比較............................................................... 58
表3-17 我們所提出的GA與AS (Colorni et al., 1994)在JSP 問題上針對不
同的benchmark 問題之效能比較.......................................................... 59
表4-1 Taillard 問題的Tabu 參數設定表...................................................... 75
表4-2 各式問題比較表................................................................................ 76
表4-3 4_4 問題集, 5_5 問題集, 7_7 問題集比較表.................................... 79
表4-4 10_10 問題集, 15_15 問題集, 20_20 問題集比較表........................ 80
表4-5 不同演算法解問題集(4_4, 5_5, 7_7)的比較表................................ 83
表4-6 不同演算法解(10_10, 15_15, 20_20)的比較表................................ 84
表5-1 FSP 問題集的參數設定表.................................................................. 99
表5-2 MNEH、NEH (Zhang et al., 2002)、GA (Zhang et al., 2002)的比較表
................................................................................................................ 102
表5-3 MNEH_ISA、OGA (Zhang et al., 2002)的比較表.......................... 104
表5-4 MNEH、MNEH_ISA、M1 (Basseur et al., 2002)、M2 (Basseur et al.,
2002)的比較表....................................................................................... 105
參考文獻
[1] Adams, J., Balas, E., and Zawack, D., “The shifting bottleneck
procedures for job shop scheduling,” Management Science, vol. 34, pp.
[2] Applegate, D. and Cook, W., “A computational study of the job-shop
scheduling instance,” ORSA Journal on Computing, vol. 3, pp. 149-156,
[3] Basseur, M., Seynhaeve, F., and Talbi, E., "Design of multi-objective
evolutionary algorithms: application to the flow-shop scheduling
problem," Proc. of Evolutionary Computation (CEC''02), pp. 1151-1156,
[4] Brasel, H., Tautenhahn, T., and Werner, F., “Constructive heuristic
algorithms for the open shop problem,” Computing, vol. 51, pp. 95-110,
[5] Chan, W. T. and Hu, H., “An application of genetic algorithm to precast
production scheduling,” Computers & Structures, vol. 79, pp.
[6] Cheng, R., Gen M. and Tsujimura, Y., “A tutorial survey of job-shop
scheduling problem using genetic algorithm-I. reprentation,” Computer
ind. Eng., vol. 30, no. 4, pp. 983-997, 1996.
[7] Colorni, A., Dorigo, M., Maniezzo, V., and Trubian, M., “Ant system
for job-shop scheduling,” JORBEL-Belgian Journal of Operations
Research, Statistics and Computer Science, vol. 34, no. 1, pp. 39-53,
1994.
[8] Croce, F., Tadei, R. and Volta, G., ”A genetic algorithm for the job shop
problem,” Computers & Operations Research, pp. 15-24, 1995.
[9] Davis, L., “Applying adaptive algorithms to epistatic domains,” In Proc.
of the Inter. Joint Conf. on Artificial Intelligence, pp. 162-164, 1985.
[10] Dell’s Amico, M. and Turbian, M., “Applying tabu search to the job
shop scheduling problem,” Annual Operations Research, vol. 40, pp.
231-252, 1993.
[11] Dorigo, M., Maniezzo, V., and Colorni, A., “The ant system:
optimization by a colony of cooperating agents,” IEEE Transactions on
Systems, Man, and Cybernetics-Part B, pp. 29-41, 1996.
[12] Falkenauer, E., and Bouffoix, S., “A genetic algorithm for job shop,”
Proc. of the 1991 IEEE international Conference on Robotics and
Automation, 1991.
[13] Fisher, H., and Thompson, G., “Probabilistic learning combinations of
local job-shop scheduling rules,” In Industrial Scheduling, J. Muth and
G. Thompson eds., Prentice-Hall, pp. 1225-1251, 1963.
[14] Gen, M., and Cheng, R., “Genetic algorithms and engineering design,”
John Wiley&Sons, New York, 1997.
[15] Glover, F., “Future paths for integer programming using surrogate
constraints,” Decision Sciences, vol. 8, no. 1, pp. 156-166, 1986.
[16] Goldberg, D., and Lingle, R., Alleles, “Loci and the traveling salesman
problem,” In Grefenstette, J. J., editor, Proc. of 1st ICGA, pp. 154-159,
1985.
[17] K Katangur, A., Pan, Y., and Fraser, M. D., “Message routing and
scheduling in optical multistage networks using simulated annealing,”
Proc. of the International Parallel and Distributed Processing
Symposium (IPDPS’02), pp. 201-208, 2002.
[18] Kobayashi, S., I, O., and Yamamura, M., “An efficient genetic
algorithm for job shop scheduling problems,” Proc. of the sixth
International Conference on Genetic Algorithms, San Francisco, CA:
Morgan Kaufmann Publishers, pp. 506-511, 1995.
[19] Kolonko, M., “Some new results on simulated annealing applied to the
job shop scheduling problem,” European Journal of Operational
Research, vol. 113, pp. 123-136, 1999.
[20] Lawrence, S., “Resource constrained project scheduling: an
experimental investigation of heuristic scheduling
techniques,“ Graduate School of Industrial Administration, Pittsburgh,
Carnegie-Mellon University, 1984.
[21] Lee, K. M. and Yamakawa, T., “A genetic algorithm for general
machine scheduling problems,” 2nd International Conference on
Knowledge-based Intelligent Electronic Systems, pp. 60-66, 1998.
[22] Li, X., Liu, W., Ren, S., and Wang, X., “A solution of job-shop
scheduling problems based on genetic algorithms,” IEEE International
Conference on Systems, Man, and Cybernetics, vol. 3, pp. 1823 -1828,
2001.
[23] Liaw, C. F., “A hybrid genetic algorithm for the open shop scheduling
problem,” European Journal of Operational Research, vol. 124, pp.
28-42, 2000.
[24] Liaw, C. F., “A tabu search algorithm for the open shop scheduling
problem,” Computer and Operations Research, 26, pp. 109-126, 1999.
[25] Liaw, C. F., “Applying simulated annealing to the open shop scheduling
problem,” Working paper, Department of Industrial Engineering and
Management, Chaoyang University of Technology, Taiwan, 1999.
[26] Metropolis, N., Resenbluth, A., Teller, A., and Teller, E., “Equation of
state maculation by fast computing machine,” The Journal of Chemical
Physics, vol. 21, pp. 1087-1091, 1953.
[27] Morikawa, K., Furuhashi, T. and Uchikawa, Y., “Single populated
genetic algorithm and its application to jobshop scheduling,” Proc. of
Industrial Electronics, Control, Instrumentation, and Automation on
Power Electronics and Motion Control, pp. 1014-1019, 1992.
[28] Nawaz, M., Emory, E., Jr, E., and Ham, I., “A heuristic algorithm for
the m-Machine, n-Job flow-shop sequencing problem,” OMEGA,
Management Science, vol. 11, no.1, pp. 91-95, 1983.
[29] Nowicki, E. and Smutnicki, C., “A fast taboo search algorithm for the
job shop problem”, Management Science, vol. 42, pp. 797-813, 1996.
[30] Oey, K. and Mason, S. J., “Scheduling batch processing machines in
complex job shops,” Conference Proceedings of the winter on
Simulation, vol. 2, pp. 1200-1207, 2001.
[31] Oliver, I., Smith, D., and Holland, J., “A study of permutation crossover
operators on the traveling salesman problem,” In Grefenstette, J. J.,
editor, Proc. of 2nd ICA, pp. 224-230, 1997.
[32] Ono, I., Yamamura, M. and Kobayashi, S., “A genetic algorithms for
job-based order crossover,” Proc. of the Third IEEE Conference on
Evolutionary Computation, Japan, pp. 547-52, 1996.
[33] Pinedo, M., “Scheduling: theory, algorithm, and systemd,”
Prentice-Hall, Englewood Cliffs, NJ, 1995.
[34] PJM, V. L., EHL, A. and JK, L., “Job shop scheduling by simulated
annealing,” Operations Research, vol. 40, pp. 113-125, 1992.
[35] SHI, G., IIMA, H., and SANNOMIYA, N., “A new encoding scheme
for solving job shop problems by genetic algorithm,” Proc. of the 35th
Conference on Decision and Control Kobe, Japan, pp. 4395-4400,
1996.
[36] Simon, F. Y. P. and Takefuji, Y., “Stochastic neural networks for solving
job-shop scheduling part 1. Problem representation,” IEEE
International Conference on Neural Networks, vol. 2, pp. 275 -282,
1988.
[37] Taillard, E., “Benchmarks for basic scheduling problems,” European
Journal of operational Research, vol. 64, pp. 278-285, 1993.
[38] Tsujimura, Y., Gen, M., and Cheng, R., “Improved genetic algorithms
for solving job-shop scheduling problem,” Engineering Design and
Automation, vol. 3, no. 2, pp. 133-144, 1997.
[39] Tsujimura, Y., Gen, M. and Mafune, Y., ”Relations between evaluation
functions and schedule-structures in GA-based job-shop scheduling,”
Technical Report of IEICE in Japanese, AI99-13, pp. 17-24, 1999.
[40] Tsujimura, Y., Mafune, Y. and Gen, M., “Effects of symbiotic evolution
in genetic algorithms for job-shop scheduling,” Proc. of the 34th
Hawaii International Conference on System Sciences, 2001.
[41] Tsujimura, Y., Sugimoto, T., Mafune, Y, and Gen, M., “A genetic
algorithm for job-shop scheduling by means of symbiosis mechanism,”
Proc. of the Third Australia-Japan Joint Workshop on Intelligent and
Evolutionary Systems, Canberra, Australia, pp. 228-231, 1999.
[42] Wang, L., and Zheng, D. Z., “A modified genetic algorithm for job
shop scheduling,” The International Journal of Advanced Manfacturing
Technology by Springer-Verlag, vol. 20, pp. 72-76, 2002.
[43] Wang, L. and Zheng, D. Z., “An effective hybrid optimization strategy
for job-shop scheduling problems,” Computers & Operations Research,
vol. 28, pp. 585-596, 2001.
[44] Watson, J. P., Barbulescu, L., Howe, A. E., and Whitley, L. D.,
"Algorithm performance and problem structure for flow-shop
scheduling," Sixteenth International Conference on Artificial
Intelligence, 1999.
[45] Zhang, L., Wang, L., and Tang, F., "Order-based genetic algorithm for
flow shop scheduling," Proc. of International Conference on Machine
Learning and Cybernetics, pp. 139-144, 2002.
[46] Zhou, H., Feng, Y., and Han, L., “The hybrid heuristic genetic
algorithm for job shop scheduling,” Computer & Industrial Engineering,
pp. 191-200, 2001.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top