跳到主要內容

臺灣博碩士論文加值系統

(44.212.99.208) 您好!臺灣時間:2024/04/23 23:09
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳志榮
研究生(外文):Zhi Rng Chen
論文名稱:界面活性劑淋洗受三氯乙烯污染地下水之研究
論文名稱(外文):Surfactant-Enhanced Removal of Trichloroethylene from Groundwater
指導教授:黃益助
指導教授(外文):Yi Zhu Huang
學位類別:碩士
校院名稱:國立屏東科技大學
系所名稱:環境工程與科學系
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2003
畢業學年度:91
語文別:中文
論文頁數:179
中文關鍵詞:界面活性劑三氯乙烯土壤淋洗
外文關鍵詞:SurfactantTrichloroethyleneSoil flushing
相關次數:
  • 被引用被引用:8
  • 點閱點閱:438
  • 評分評分:
  • 下載下載:93
  • 收藏至我的研究室書目清單書目收藏:1
由於工業製程中大量使用有機溶劑,使得這些有機污染物可能洩漏至土壤,進而污染地下水體。在土壤復育技術使用方面,傳統用於整治受污染場址的土壤蒸氣抽取法及抽水處理法,在運用上有較多的限制且效果較不明顯,近年來許多新技術發展,以求經濟及短時間內達成整治目的。傳統上所使用pump-and-treat及soil vapor extraction法,對於污染物種類、特性及場址之選擇性偏高,無法在短時間內達成整治法規之要求,所以現今以界面活性劑溶液淋洗土壤技術最為常用,此一程序之污染物通常是疏水性物質,因界面活性劑分子具有兩性結構,使其易於聚集在有機相/水相界面,降低有機相/水相之間的表面張力,增加有機相的移動性或增加有機物在土壤表面的脫附能力,使得有機物能由孔洞中被移除,進而分散到溶液中。且因界面活性劑的微胞結構,會增加有機物在水中的溶解能力或產生乳化現象,有助於有機物的移除。本研究係以土壤管柱做為土壤淋洗裝置,將石英砂和地下水層砂分成不同粒徑大小,並以不同淋洗劑去淋洗受Trichloroethylene(TCE)污染之石英砂和地下水層砂,並對兩者的復育效果作評估和比較。本研究所採用的陰離子界面活性劑為Sodium dodecyl sulfate(SDS),而非離子界面活性劑為Tween 80和TX-100以及地下水作為淋洗劑,土壤介質為石英砂及採自二仁溪附近之地下水層砂。此外,本研究亦比較石英砂及地下水層砂兩者在不同淋洗劑淋洗後污染物之回收效果。實驗結果顯示,在相行為中Tween 80之乳化層在高濃度時反而有減少的趨勢,TX-100和SDS之乳化程度隨界面活性劑濃度的升高而增加,但以SDS的乳化情形較為明顯,另一方面,由淋洗地下水層砂和石英砂流量變化數據得知淋洗地下水層砂的初始流量和淋洗石英砂時的流量較為相似,通常於收集第一個孔隙體積時的流量最大,往後流量就呈下降趨勢或維持穩定狀態。在含有1%及3%TCE之石英粗砂與細砂中,以1%淋洗劑淋洗管柱中之TCE,其回收率的大小依序為:TX-100 > Tween80 > SDS > Groundwater,而在含有1%及3%TCE的地下水層粗砂及細砂中,以1%淋洗劑淋洗管柱中之TCE,其回收率大小依序為:Tween80 > TX-100 > SDS > Groundwater。在二仁溪附近粗砂及細砂下使用脈衝式淋洗不但可增加淋洗後之流出量,還可降低乳化作用對淋洗劑的淋洗效率和增加1%及3%TCE之去除效率。在超過濾實驗結果可發現使用MWCO=1000Daltons之薄膜處理管柱(含二仁溪附近地下水層粗砂及細砂)流出液為1%TX-100與1%及3%TCE去除效率比MWCO=10000Daltons之薄膜處理管柱(含二仁溪附近地下水層粗砂及細砂)流出液為1%TX-100與1%及3%TCE去除效率高。期待能藉由此研究,提供復育受含氯有機溶劑污染地下水整治方法設計及技術評估之參考。
Organic solvents are widely used in chemical manufacturing processes. Those solvents possibly leaked into soil and further contaminated the underground aquifer. Traditional soil remediation technology, such as soil vapor extraction (SVE) and pump-and-treat technique, has several restrictions and their remediation efficiencies are not promising. Traditional soil remediation techniques can not meet the strict environmental regulations due to their selectivity to the pollutant types, characteristics, and contaminated sites. The surfactant flushing technology is developed and often utilized to remediate the contaminated aquifers. When the surfactant is injected into aquifers, the DNAPLs are trapped into the hydrophobic center of the micelles formed by the surfactant monomers, and thus the solubility of the DNAPLs is increased. The surfactants used for in-situ chemical flushing are typically non-ionic or anionic, because cationic surfactants tend to be adsorbed onto the surface of the negatively charged soil particles. Non-ionic surfactants are more desirable because they possess lower critical micelle concentration (CMC) and are not liable to flocculate clay particles in the soil. This research utilized the anion and non-ionic surfactant solutions to flush the soil column filled with quartz or aquifer sands that were polluted by trichloroethylene (TCE). The remediation efficiencies of three surfactants to TCE removal were evaluated. The anion surfactant applied in this study was sodium dodecyl sulfate (SDS), and the non-ionic ones were Tween 80 and Triton 100, respectively. In addition, groundwater was also used to flush the quartz and aquifer sands to compare the removal efficiencies that were flushed by different surfactants. The experimental results showed that the emulsion degree of three surfactants in the phase behavior runs was SDS > TX-100 > Tween80. The results regarding both flushing aquifer and quartz sands revealed that the flow rate in flushing aquifer sands was similar to that in flushing quartz sands. Moreover, the flow rate reached the maximum at the first pore-volume collection, it decreased or reached steady state condition with the following sample collection. For 1% and 3% of TCE in coarse and fine quartz sand, the recovery efficiencies of TCE with 1% of flushing agents were TX-100 > Tween 80 > SDS > groundwater in sequence; while for 1% and 3% of TCE in coarse and fine aquifer sand were Tween 80 > TX-100 > SDS > groundwater in sequence. The pulse-flushing technique not only decreased the dosage of surfactant but also increased the flow rate as well as the TCE removal efficiency. The results from ultrafiltration experiments showed that ultrafiltration membranes with pore sizes of 10,000 and 1,000 daltons could effectively retain the majority of the surfactant and TCE. The rejection ratio of TX-100 (1%) and TCE (1% and 3%) with membrane pore size of molecular-weight-cut-off (MWCO) = 1,000 Daltons were better than those with MWCO = 10,000 Daltons. It is expected that the data obtained in this study can be utilized on the design and evaluation of soil flushing technique for remediation of the DNAPLs contaminated aquifers.
中文摘要…………………………………………………………...I
英文摘要………………………………………………………….IV
致謝……………………………………………………………...VII
總目錄…………………………………………………………..VIII
表目錄………………………………………………………….XII圖目錄…………………………………………………………XIII第一章 前言……………………………………………………...1
1.1 研究動機…………………………….…………………...1
1.2 研究目的……………………………………………….1第二章 文獻回顧………………………………………………...3
2.1 界面活性劑的基本特性…………………………………3
2.1.1 界面活性劑的分類………………………………….5
2.1.2 界面活性劑的起泡能力…………………………….6
2.1.3 界面活性劑與臨界微胞濃度…………………….…9
2.1.4 界面活性劑的毒性……………………………….…9
2.1.5 界面活性劑與HLB值之關係………………………9
2.1.6 界面活性劑移除污染物之機制…………………...10
2.2 界面活性劑在土壤淋洗之應用…………………….….10
2.3 地表下污染來源…………………………………….….15
2.3.1 NAPL在含水層之傳輸行為……………………….22
2.3.2 土壤中之污染物來源………………………….…..28
2.3.3 揮發性有機化合物…………………………….…..30
2.4 國內外相關界面活性劑淋洗之研究現況……………..35
2.5薄膜分離程序…………………………………………...37
2.5.1 薄膜簡介……………………………………….…..37
2.5.2 薄膜種類與分離機制………………………….…..37
2.5.3 薄膜過濾方式……………………….……………..39
2.5.4 影響薄膜操作的因素…………………….………..39
2.5.5 超過濾(UF)原理與去除機制……….……………..42
第三章 實驗材料與方法…………………………………….…43
3.1 實驗材料………………………………………………..43
3.1.1 供試砂來源及其特性……………………………...43
3.1.2 界面活性劑種類及性質…………………………...44
3.1.3 有機溶劑…………………………………………...44
3.1.4 界面活性劑與TCE之相行為……………………..45
3.2 實驗裝置…………………………………………….….45
3.2.1 管柱淋洗裝置……………………………………...45
3.2.2 超過濾薄膜裝置…………………………………...47
3.3 其他實驗設備…………………………………………..48
3.4 實驗流程………………………………………………..49
3.4.1 供試砂(分成粗砂及細砂)之前處理………………51
3.4.2 實驗步驟…………………………………………...51
3.5 計算公式……………………………………………..…52
3.6 實驗之品保與品管……………………………………..52
3.6.1 檢量線建立……….………………………………52
第四章 結果與討論.……………………………………………55
4.1 界面活性劑與TCE之相行為………………………….55
4.2 淋洗劑在不同粒徑下之供試砂流量變化……………..58
4.3 TCE之回收效率………………………………………...61
4.4 界面活性劑之回收效率………………………………..67
4.5 管柱中含不同粒徑之供試砂下1%及3%TCE濃度變化……………………………………………………….70
4.6 脈衝式淋洗在不同粒徑下之供試砂流量及TCE回收率之變化………………………………………………….87
4.7 超過濾薄膜裝置處理管柱淋洗後流出液之濃度及回收率變化關係………………………………………….…92
第五章 結論、建議和貢獻…………………………………….104
5.1 結論……………………………………………………104
5.2 建議……………………………………………………105
5.3 本研究之貢獻…………………………………………105
第六章 參考文獻……………………………………….……..106
第七章 附錄……………………………………………...116~178
作者簡介………………………………………………………...179
王鳳英(1996),界面活性劑的原理與應用,高立圖書有限公司,第24~89頁,台北。
徐誌宏(2001),利用界面活性劑脫除地下水含四氯乙烯之研究,國立屏東科技大學環工系研究所碩士論文,第35-50頁,屏東。
郭魁士(1992),土壤實驗,中國書局,第27-137頁。
葉桂君、楊朝欽、林麗卿(1998),“石油碳氫化合物於土壤清洗系統之分佈”,第十二屆廢棄物處理技術研討會,第335-342頁。
葉桂君、林麗卿、彭素蘭、吳鴻明(1999),“芳香族碳氫化合物在土壤-界面活性劑吸附微胞系統吸附性之探討”,第十四屆廢棄物處理技術研討會,第63~70頁。
趙承琛(1993),界面科學基礎,復文書局印行,第90~97頁,臺北。
蔡文田、邱伸彥(1992),“蒸氣脫脂用含氯溶劑之特性、管制和污染預防”,工業污染防治,第41期,第146-160頁。
盧滄海、賴龍山(1989),“廢溶劑回收可行性之探討”,工業污染
防治,第29期,第102-177頁。
Abdul, A.S., Gibson, T.L., Ang, C.C., Smith, J.C. and Sobczynski, R.E (1992), “In-situ surfactant washing of polychlorinated biphenyls and oils from a contaminated site,” Ground Water, 30: 219-231.
Abriola, L.M., Dekker, T.J. and Pennell, K.D (1993), “Surfactant enhanced solubilization of residual dodecane in soil columns, Il Mathematical modeling,” Environ. Sei. Technol., 27: 2341-2351.
Allred, B. and Brown, G.O (1994), “Surfactant-induced reductions in soil hydraulic conductivity,” Ground Water Monit. Rev., 2: 174-184.
Ang, C.C. and Abdul, A.S (1991), “Aqueous surfactant washing of residual oil contamination from sandy soil,” Ground Water Monitoring Review 11: 121-127.
Anselme, C. and Jacobs, E.P (1996), Ultrafiltration, water treatment membrane process, J. Mallevialle, P.E. Odendaal, and M.R. Wiesner, McGraw-Hill, Singapore.
Aronstein, B.N., Calvillo, Y.M., Alexsander, M (1981), “Effect of surfactants at low concentrations on the desorption and biodegradation of sorbed aromatic compounds in soil,” Environ. Sci. Technol., 25: 1728-1731.
Chowdiah, P., Misra, B.R. and Kilbane II, J, J (1998), “Foam prop-agation through soils for enhanced in-situ remediation,” J. Haz. Mater, 62: 265~280.
Clarke, A.N., Plumb, P.D. and P.D. and ubramadyan, T.K (1991), “Soil clean-up by surfactant washing I. results and mathematical modeling,” Separat. Sei. Technol., 26: 301-343.
Dietz, D.N., Bruining, J. and Heijna, H.B (1985), “Foam drive seldom meaningful,” J. Pet. Tech., 37: 921-922.
Diallo, M.S., Abriola, L.M. and Weber, W.J (1994), “Solubilization of non-aqueous phase liquid hydrocarbons in micellar solutions of dodecyl alcohol ethoxylates,” Environ. Sci. Technol., 28: 1829-1837.
Dwarakanath, V., Kostarelos, K., Pope, G.A., Shotts, D. and Wade, W.H (1999), “Anionic surfactants remediation of soil columns contaminated by non-aqueous phase liquids,” J. Contaminant Hydrology, 38: 465-488.
Ellis, W.D., Payne, J.R., McNabb, G.D (1984), “Treatment of contaminated soils with aqueous surfactants,” US EPA No. EPA/600/2-85/129.
Flumerfelt, R.W. and Prieditis, J (1988), “Mobility of foam in porous media,” ACS Symp. Ser., 373: 295-325.
Fountain, J.C., Kilmek, A., Beikirch, M.G. and Middleton, T.M (1991), “Use of surfactants for in situ extraction of organic pollutants from a contaminated aquifer,” J. Haz. Mater, 28: 295-311.
Friedmann, F. and Jensen, J.A (1986), “Some parameters influencing the formation and propagation of foams in porous media,” SPE, 15087: 441-449.
Fried, D.J (1996), “Remediation of petroleum-contaminated soils,” Synthesis of High way Practice, 226: 1-11.
Hayes, M.E., Nestau, E., Hrebenar, K.R (1986), “Microbial surfactants,” Chemtech 16: 239-245.
Hirasaki, G.J. and Lawson, J.B (1985), “Mechanisms of foam flow in porous media : Apparent viscosity in smooth capillaries,” SPEJ, 5: 175-190.
Holm, L.W (1968), “The mechanism of gas and liquid flow through
porous media in the presence of foam,” SPEJ, 243: 359-369.
Huang, D.D., Nikolov, A. and Wasan, D.T (1986), “Foams: basic properties with application to porous media,” Langmuir, 2: 672-677.
Jager, D.A. and Golich, T.G (1987), “Preparation and characterization of double-chain destruction surfactants and derived vesicles,” J. Am. Oil Chem. Soc., 64: 1550-1551.
Jacangelo, J.G (1998), Chellam Shankararaman and R.R. Trussell, “Membrane treatment,” Civil Engineering, 68(9): 42-45.
Kanga, S.H., Bonner, J.S., Page, C.A., Mills, M.A., Autenrieth, R.L
(1997), “Solubilization of naphthalene and methyl-substi-tuted naphthalenes from crude oil using biosurfactants,” Environ. Sci. Technol. 31: 556-561.
Kile, D.E., Chiou, C.T (1989), “Water solubility enhancements of DDT and tri-chloro-benzene by some surfactants below and above the critical micelle concentration,” Environ. Sci. Technol., 23: 832-838.
Kilbane II, Chowdiah, J.J Kayser, P. Misra, K.J. Jackowski, B. Srivastava, K.A. Sethu , V.J. Nikolov, G.N. Wasan, A.D. Hayes, D.T (1997), “ Land contamination,” Reclamation, 5: 41.
Liu, Z., Laha, S., Luthy, R.G (1991), “Surfactant solubilization of polycyclic aromatic hydrocarbon compounds in soilwater suspension,” Water Sci. Technol, 23: 475-485.
Mackay, D.M., Cherry, J.A (1989), “Groundwater contamination: pump-and-treat remediation,” Environ. Sci. Technol., 23: 630-636.
Macdonald, T.A. and Farouq Ali, S.M (1991), “Experimental and numerical study of foam flow through porous media,” AICHE J, 87: 74-88.
Marle, C.M (1991), “Reduction of capillary forces by surfactants,” in Basic Concepts in Enhanced Oil Recovery Processes, Baviere, M. Ed., Elsevier Applied Science, New York, Chapter 1.
Mercer, J.W. and Chen R.M (1990), “A review of immiscible fluids in the subsurface: properties, models, characterization and remediation. ” J. Contam, Hydrol, 6: 107-163.
Minnsieux, L (1974), “Oil displacement by foams in relation to their physical properties in porous media,” J. Pet. Tech., 26: 100-108.
Nash, J.H (1988), “Field studies of in situ soil washing,” U.S Environ, Prot, Agency, Cincinnati, OH, Rep., EPA/600/2-87/110.
Nilson J.A. and Digiano F.A (1996), “Influence of NOM composition on nanofiltration,” J.AWWA May, No5: 53-66.
Ouyang, Y., Mansell, R.S., Rhue, R.D (1995), “Critical review,” Environ. Sci. Technol., 25(3): 269-290.
Pankow, J.F., Cherry, J.A (1996), Dense chlorinated solvents and other DNAPL’s in groundwater, Waterloo Press, Portland.
Pennell, K.D., Abriola, L.M., Weber, W.J. Jr (1993), “Surfactant enhanced solubilization of residual dodecane in soil columns: l. Experimental investigation,” Environ. Sci. Technol., 27: 2332-2340.
Pennell, K.D., Pope, G.A., Abriola, L.M (1994), “Surfactant enhanced remediation of soil columns contaminated by residual tetrachloroethylene,” J. Contam. Hydrol., 16: 35-53.
Pennell, K.D., Pope, G.A., Abriola, L.M (1996), “Influence of viscous and buoyancy forces on the mebilization of residual tetra-chloro-ethylene during surfactant flushing,” Environ. Sci. Technol., 30: 1328-1335.
Ross, J. and Miles, G.D (1950), “A mechanism for the rupture of liquid films by antifoaming agents,” J. Physical and Colloid Chem., 54: 429-436.
Rosen, M.J (1989), Surfactants and interfacial phenumena, Wiley, New York, NY.
Rouse, J.D., Sabatini, D.A., Suflita, J.M and Harwell, J.H (1994), “Influence of surfactants on microbial degradation of organic compounds,” Crit. Rev. Environ. Sci. Technol., 24: 325-370.
Roy, D., Kongara, S. and Valsaraj, K.T (1995), “Application of surfactant solutions and colloidal gas aphron suspensions in flushing naphthalene from a cntaminated soil matrix,” J. Haz. Mater, 42: 247-263.
Sabatini, D.A., Knox, R.C., Harwell, J.H (1996), “Surfactant enhanced DNAPL remediation: surfactant selection, hydraulic efficiency and econcomic factors,” National Risk Management Research Laboratory, EPA, Ada; EPA/600/S-96/002.
Schwille, F (1998), “Groundwater pollution by mineral oil products,” Proc. Moscow Symp. Aug. AISH Publ., No.103: 226-239.
Sharma, M.K. and Shah, D.O (1984), “Effect of oil viscosiy on recovery process in relation to foam flooding,” JAOCS 61: 77-84.
Singh, G., Hirasaki, G.J. and Miller, C.A (1997), “Dynamics of foam films in constricted pores,” AICHEJ, 43: 3241-3252.
Taylor, K.C., Hawkin, B.F (1991), In emulsions fundamentals and applications in petroleum industry; Schramn L.L., Ed; American Chemical Society: Washington, D.C.
Valsaraj, K.T., Grupta, A., Thibodeaux, L.J., Harrison, D.P (1988), “Partitioning of chloromethanes between aqueous and surfactant micellar phases,” Water Res., 22: 1173-1183.
Wang, G.C (1984), “Laboratory study of CO2 foam properties and displacement mechanism,” SPE/DOE 12645: 169-173.
Walker, R.C., Hofstee, C., Dane, J.H., Hill, W.E (1998), “Surfactant
enhanced aquifer remediation of PCE in a two-dimensional heterogeneous porous medium,” J. Contam. Hydrol., 34: 17-30.
West, C.C., Harwell, J.H (1992), “Surfactants and subsurface remediation,” Environ. Sci. Technol, 26: 2324-2330.
White, M.D., Ostrom, M (1998), “Modeling surfactant-enhanced non-aqueous-phase liquid remediation of porous media,” Soil Sci., 163: 931-940.
Wilson, D.J. and Clarke, N.A (1994), Hazardous waste site soil remediation, Marcel Dekker, Inc., New York.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top