跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.168) 您好!臺灣時間:2024/12/15 07:46
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:呂啟瑞
研究生(外文):Chi-Jui Lu
論文名稱:不同海拔刺鼠一氧化氮合成酶與第一型血管緊縮素接受器基因表現之研究
論文名稱(外文):Expression of nitric oxide synthase and angiotensin type I receptor gene of Nivienter coxingi resided in different altitude
指導教授:張學文張學文引用關係華瑜
指導教授(外文):Hsueh –Wen ChangJulie Y.H. Chan
學位類別:碩士
校院名稱:國立中山大學
系所名稱:生物科學系研究所
學門:生命科學學門
學類:生物學類
論文種類:學術論文
論文出版年:2003
畢業學年度:91
語文別:英文
論文頁數:64
中文關鍵詞:海拔一氧化氮合成酶第一型血管緊縮素接受器
外文關鍵詞:nitric oxide synthasealtitudeangiotensin type 1 receptor
相關次數:
  • 被引用被引用:0
  • 點閱點閱:126
  • 評分評分:
  • 下載下載:8
  • 收藏至我的研究室書目清單書目收藏:0
不同海拔其環境因子如溫度和氧氣等會隨之改變。同種間的不同個體通常會因生存環境的不同而在形態、行為、生殖或生理上產生相應性變化,以符合生存的需要。本研究從分子生物學角度,對其心血管系統生理機制在海拔適應過程扮演之角色進行研究,藉由探討各海拔族群一氧化氮合成酶與血管緊縮素接受器基因表現變化,進一步瞭解此等物質參與動物在不同海拔心血管功能適應之角色。
本實驗以台灣本島垂直分佈較廣的嚙齒動物刺鼠(Niviventer coxingi)作為研究對象。並且在天然的情況下進行研究,希望藉此來提供一個具生態背景的個體不同海拔生理適應,並藉由低海拔馴養,進一步瞭解此生理適應之意義。不同海拔和馴養期間刺鼠的體重、血壓、心跳和各採樣組織中(大腦皮層、下視丘、延腦、肺、心、主動脈、腎上腺及腎)神經性(nNOS)、內皮細胞性(eNOS)或誘發性(iNOS)一氧化氮合成酶與第一型或第二型血管緊縮素接受器(ATI or ATII receptor) mRNA含量被測量並進行分析。結果顯示:1.體重在不同海拔族群有顯著差異(750 m: 178.6±35.8 g and 1600 m: 122.3±29.3 g),海拔越高體重顯著下降。原棲息於海拔750公尺族群於馴養期間體重有下降趨勢,而原棲息於海拔1600公尺族群則並無統計差異。2.血壓與心跳方面,不同海拔族群及馴養期間並無統計差異。3.ATII receptor mRNA 表現量在各組織中皆少(在可測量範圍之下),因此在以下部分不再敘述。各組織中一氧化氮合成酶與第一型血管緊縮素接受器基因表現,在不同海拔族群間並無顯著差異。但各組織中一氧化氮合成酶與第一型血管緊縮素接受器基因表現在馴養後有顯著差異,其中原棲息於750公尺族群nNOS在心臟之基因表現有逐漸減少趨勢,ATI接受器在腎臟基因表現在馴養三個月時先減少但馴養五個月後回到野外的表現量。在原棲息於1600公尺族群iNOS在心臟之基因表現有逐漸減少趨勢。
綜合上述結果,刺鼠的血壓、心跳和組織中第一型血管緊縮素接受器與不同亞型一氧化氮合成酶基因表現,並不因其棲息海拔不同而有差異。若無其他補償機制,較高海拔個體對氧氣的利用勢必受到低氧環境的限制,而高海拔個體體重偏低可能與低氧環境的適應有關。
Environmental factors such as ambient temperature and oxygen availability are variation in different altitude. Individuals within a species, living in variable environments often display phenotypic plasticity by changing morphology, behavior, reproduction, and physiology to meet the individual’s ability to survive demanding conditions. This study was aimed to investigate the expression of angiotensin receptor and nitric oxide synthase genes of individuals resided at differential altitude, in an attempt to find the role of these molecules in cardiovascular adaptation to altitude.
Spiny rats (Niviventer coxingi) are widely elevational distributed in Taiwan. They were studied under more natural conditions to provide an ecological context data on physiological plasticity between the different altitudes. I examined the body weight, blood pressure, heart rate and the expression of angiotensin type 1 or type 2 (ATI or ATII) receptor and nitric oxide synthase (NOS) genes in tissues (cortex, hypothalamus, medulla, lung, heart, aorta, adrenal gland and kidney) of spiny rats resided at differential altitude and during the domesticated period. The results of the study showed that spiny rats resided at higher altitudes were lighter than that at lower altitudes (750 m: 178.6±35.8 g and 1600 m: 122.3±29.3 g). Spiny rats resided at 1600 m did not change their body weight during the domesticated period, but rats resided at 750 m gradually reduced their body weight. Blood pressure and heart rate were similar between rats resided at different altitudes, and did not change during the domesticated period. ATI receptor, endothelelial NOS (eNOS), inducible NOS (iNOS) and neuronal NOS (nNOS) mRNA expression in these tissues were similar between rats resided at different altitudes. ATII receptor mRNA expressed in these tissues under our detection limit. Rats resided at 750 m declined the level of nNOS in heart, when they were domesticated at 100 m. ATI receptor in kidney reduced at first, but subsequently increase to same level like native. Moreover, rats resided at 1600 m declined the level of iNOS in heart, when they were domesticated at 100 m.
Together, these results indicate that heart rate, blood pressure, ATI receptor, eNOS, iNOS and nNOS mRNA expressions in these tissues were similar between rats resided at different altitudes. If there was no other compensatory mechanism, individuals resided at higher altitude were limited in low available oxygen. A reduced body weight could help in adaptation to high-altitude.
ABSTRACT (IN CHINESE)…………………………………………………………………………...2
ABSTRACT (IN ENGLISH)…………………………………………………………………………...4
INTRODUCTION………………………………………………………………………………………6
THE PURPOSE OF THIS STUDY…………………………………………………………………..10
MATERIALS AND METHODS……………………………………………………………………...12
STUDY AREA ………………………………………………………………………………………12
EXPERIMENTAL ANIMALS……………………………………………………………………..12
EXPERIMENTAL MEASUREMENTS…………………………………………………………...13
RT-PCR (REVERSE TRANSCRIPIPTION-POLYMERASE CHAIN REACTION)……… 13
1.TOTAL RNA EXTRACTION FROM TISSUE SAMPLES ………………………………13
2.REVERSE TRANSCRIPTASE REACTION………………………………………………14
3.POLYMERASE CHAIN REACTION……………………………………………………...15
BLOOD PRESSURE AND HEART RATE …………………………………………………… 15
STATISTICAL ANALYSES………………………………………………………………………..16
RESULTS………………………………………………………………………………………………18
BODY WEIGHT…………………………………………………………………………………….18
BLOOD PRESSURE AND HEART RATE……………………………………………………….19
EXPRESSION OF NITRIC OXIDE SYNTHASE AND ANGIOTENSIN RECEPTOR GENES………………………………………………………………………………………………20
DISCUSSION………………………………………………………………………………………….24
BODY WEIGHT…………………………………………………………………………………….24
BLOOD PRESSURE AND HEART RATE……………………………………………………….25
EXPRESSION OF NITRIC OXIDE SYNTHASE AND ANGIOTENSIN RECEPTOR
GENES………………………………………………………………………………………………25
CONCLUSION………………………………………………………………………………………..28
REFERENCES………………………………………………………………………………………..29
APPENDICES AND FIGURES ……………………………………………………………………..33
Bao X., B. P. Kennedy, S. R. Hopkins, H. J. Bogaard, P. D. Wagner, and M. G. Ziegler. 2002. Human autonomic activity and its response to acute oxygen supplement after high altitude acclimatization. Autonomic Neuroscience: Basic and Clinical, 102:54-59.
Barouch L. A., R. W. Harrison, M. W. Skaf, G. O. Rosas, T. P. Cappola, Z. A. Kobeissi, I. A. Hobai, C. A. Lemmon, A. L. Burnett, B. O’Rourke, E. R. Rodriguez, P. L. Huang, J. A. C. Lima, D. E. Berkowitz, and J. M. Hare. 2002. Nitric oxide regulates the heart by spatial confinement of nitric oxide synthase isoforms. Nature, 416:337-339.
Beall C. M., D. Laskowski, K. P. Strohl, R. Soria, M. Villena, E. Vargas, A. M. Alarcon, C. Gonzales, and S. C. Erzurum. 2001. Pulmonary nitric oxide in mountain dwellers. Nature, 414:411-412.
Beall C. M., M. J. Decker, G. M. Brittenham, I. Kushner, A. Gebremedhin, and K. P. Strohl. 2002. An Ethiopian pattern of human adaptation to high-altitude hypoxia. PNAS, 99:17215-17218.
Beck K. F., W. Eberhardt, S. Frank, A. Huwiler, U. K. Messmer, H. Mühl, and J. Pfeilschifter. 1999. Inducible NO synthase: role in cellular signaling. The Journal of Experimental Biology, 202:645-653.
Berré J., J. L. Vachiéry, J. J. Moraine, and R. Naeije. 1999. Cerebral blood flow velocity responses to hypoxiain subjects who are susceptible to high-altitude pulmonary oedema. European Journal of Applied Physiology, 80:260-263.
Chang S. W. 1991. The Population Ecology of Niviventer coxingi in the Miantienshan Area. Master’s Thesis, National Taiwan University, Taipei. (In Chinese)
Hammond K. A., J. Roth, D. N. Janes, and M. R. Dohm. 1999. Morphological and physiological responses to altitude in deer mice Peromyscus maniculatus. Physiological and Biochemical Zoology, 72:613-622.
Irlbeck M., T. Iwai, T. Lerner, and H. G. Zimmer. 1997. Effects of angiotensin II receptor blockade on hypoxia-induced right ventricular hypertrophy in rats. Journal of Molecular and Cellular, 29:2931-2939.
LaManna J. C., L. M. Vendel, and R. M. Farrell. 1992. Brain adaptation to chronic hypobaric hypoxia in rats. Journal of applied physiology, 72:2238-2243.
Leung P. S., M. L. Fung, and M. S. C. Tam. 2003. Review: Renin-angiotensin system in the carotid body. The International Journal of Biochemistry & Cell Biology, 35:847-854.
Leung P. S., S. Y. Lam, and M. L. Fung. 2000. Chornic hypoxia upregulates the expression and function of AT1 receptor in rat carotid body. Journal of Endocrinology, 167:517-524.
Lin C. Y. 1996. Study of Activity Pattern of Niviventer coxingi in Wu-tou Mt. Nature Reserve. Master’s Thesis, National Sun Yat-sen University, Kaohsiung. (In Chinese)
Lu S. Y., K. J. Tang, H. Y. Ku, and H. H. Huang. 2000. Climatic conditions of forested lands of Taiwan Forestry Research Institute. Taiwan Journal of Forest Science, 15:429-440.
Lucius R., S. Gallinat, S. Busche, P. Rosenstiel, and T. Unger. 1999. Review: Beyond blood pressure: new roles for angiotensin II. Cellular and Molecular Life Sciences, 56:1008-1019.
Lumb A. B. 2000. Nunn’s Applied Respiratory Physiology. 5th ed. Butterworth- Heinemann, Boston. pp.357-374.
McAuliffe F., N. Kametas, E. Krampl, J. Ernsting, and K. Nicolaides. 2001. Blood gases in pregnancy at sea level and at high altitude. British Journal of Obstetrics and Gynaecology, 108:980-985.
Monge C., and F. León-Velarde. 1991. Physiological adaptation to high altitude: oxygen transport in mammals and birds. Physiological Reviews, 71:1135-1172.
Nathan C., and Xie Q. W. 1994a. Nitric oxide synthase: roles, tolls, and controls. Cell, 78:915-968.
Nathan C., and Xie Q. W. 1994b. Regulation of biosynthesis of nitric oxide. The Jounal of Biological Chemistry, 269: 13725-13728.
Neckář J., F. Papoušek, O. Nováková, B. Ošťádal, and F. Kolář. 2002. Cardioprotective effects of chronic hypoxia and ischaemic preconditioning are not additive. Basic Research in Cardiology, 97:161-167.
Niwa K., S. Takizawa, C. Kawaguchi, U. Kamiya, I. Kuwahira, and Y. Shinohara. 1999. Expression of inducible nitric oxide synthase immunoreactivity in rat brain following chronic hypoxia: effect of aminoguanidine. Neuroscience Letters, 271: 109-112.
Palmer R. M. J., D. D. Rees, D. S. Ashton, and S. Moncada. 1988. L-arginine is the physiological precursor for the formation of nitric oxide in endothelium-dependent relaxation. Biochemical and Biophysical Research Communications, 153:1251-1256.
Pfeilschifter J., W. Eberhardt, and K. F. Beck. 2001. Regulation of gene expression by nitric oxide. Pflűgers Archiv European Journal of Physiology, 442:479-486.
Rouet-Benzineb P., S. Eddahibi, B. Raffestin, M. Laplace, S. Depond, S. Adnot and B. Crozatier. 1999. Induction of cardiac nitric oxide synthase 2 in rats exposed to chronic hypoxia. Journal of Molecular and Cellular Cardiology, 31:1697-1708.
Wen H. C. 2002. Effect of chronic hypoxia on heatstroke syndrome and brain morphology in rats. PhD Dissertation, National Yang-Ming University, Taipei. (In Chinese)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top