跳到主要內容

臺灣博碩士論文加值系統

(44.200.168.16) 您好!臺灣時間:2023/03/31 18:02
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:黃韋凱
研究生(外文):Wei-Kai Huang
論文名稱:2.5-10Gb/s高速蝶式半導體雷射模組銲後位移之研究
論文名稱(外文):The Study of Post-Weld-Shift in 2.5-10Gb/s High-Speed Butterfly Laser Module
指導教授:鄭木海
指導教授(外文):Wood-Hi Chen
學位類別:碩士
校院名稱:國立中山大學
系所名稱:光電工程研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2003
畢業學年度:91
語文別:中文
論文頁數:68
中文關鍵詞:銲後位移蝶式模組
外文關鍵詞:PWSBuuterfly
相關次數:
  • 被引用被引用:19
  • 點閱點閱:195
  • 評分評分:
  • 下載下載:24
  • 收藏至我的研究室書目清單書目收藏:2
本論文主旨在探討高速蝶式雷射模組的銲後位移,蝶式雷射模組構裝過程中最困難的部分是光纖與雷射間的固定結合,目前固定光纖位置是利用雷射銲接技術,但在雷射銲接過程中,因快速相變化造成材料產生的收縮現象,導致熔池產生複雜的殘留應力分佈。此殘留應力將使得光纖與雷射對準的最佳位置產生位移,稱之為銲後位移(Post Weld Shift),此種銲後位移是影響產品良率的關鍵因素。
研究如何減少銲後位移,提高產品的良率,是開發低成本的高速半導體雷射模組的重要主題。但在研究如何減少銲後位移,首要的工作是建立一套度量銲後位移的系統,本實驗室成功的利用一組300倍的高倍率CCD與影像擷取卡建立一套影像分析系統,並利用Autocad 與Labview 這兩套軟體計算銲後位移。
經由這套系統,我們從實驗中發現光纖套管與馬鞍之間的尺寸設計是影響銲後位移最重要因素之一。本研究結果得到適當的保持光纖套管與馬鞍之間各有一段約5μm的間隙,經雷射銲接後,對光纖所產生的銲後位移約1μm以下,而採用光纖套管與馬鞍之間沒有任何間隙的設計,經雷射銲接後,會產生約4μm的位移。這是因為經由雷射銲接所產生的材料形變直接影響到光纖原來的位置,而在有間隙的設計下,材料的形變因間隙的存在而有個緩衝,使得光纖經雷射後銲接後的位移較小。採用有間隙的設計後,本實驗室已經建立穩定的製程,完成後的雷射模組功率損失皆小於0.4dB,因此研究結論為適當的在光纖套管與馬鞍間保持適當的間隙,是減少銲後位移進而提升雷射模組良率的最佳方法之一。
For high-speed laser modules in lightwave communication systems, the butterfly laser modules are widely used. When laser welding is applied to assemble a butterfly package, it is usually necessary to have mechanical elements such as substrates, fiber ferrule, and clips of house materials to facilitate fiber handing and retention within the package. One of the greatest challenges for packaging these optoelectronic components by employing laser welding is to pursue the reliable and accurate joint. However, during the welding process, rapid solidification of the welded region and the associated material shrinkage often cause a post-weld-shift (PWS) of fiber. The PWS can never be completely eliminated in the laser welding process, and significantly affects the package yield.
The PWS induced fiber alignment shifts of fiber ferrule-clip (FFC) joints in high-speed butterfly laser packaging by laser welding technique has been studied experimentally. There are two types of clip design in the FFC joint: the type I design is without a gap between clip and fiber ferrule and type II is a 5 �慆 gap. Using a novel 300x high magnification video probe camera with image acquisition system, the measured results showed that the fiber shifts of FFC joints with the type II exhibited shifts less than that with the type I. The PWS induced fiber alignment shifts of type I was about 4 �慆, and the PWS of type II was about 1 �慆. In FCC joint, the horizontal gap design between the clip and the fiber ferrule would greatly affect the effects of PWS induced fiber shifts. This is because the residual displacement in laser welding process may be compensated and minimized after solidification shrinkage if a gap design between welded components is suitable. Therefore, in the process of a FFC joint in laser welding process for laser module packaging, an optimum FFC design in welded components, such as type II of 5 μm gap design, is necessary in order to reduce the PWS, and hence to minimize the fiber alignment shifts.
Using the design of type II, we have established a stable packaging process in butterfly laser modules with loss of coupling power less than 0.4dB. This suggests that suited gap design may be more suitable for FFC joints in butterfly packaging.
內容目錄
頁次
中文摘要 I
英文摘要 II
致謝 III
內容目錄 IV
圖表目錄 VI

第一章 緒論 1
1-1 研究背景 1
1-2 研究目的 4
1-3 論文架構 5

第二章 雷射銲接系統與金相分析 6
2-1 雷射銲接 6
2-2 雷射銲接系統 7
2-3 金相分析 14
2-4 材料吸收率 16
2-5 材料鍍金對雷射銲接的影響 20
2-5-1 鍍金之流程 20

第三章 蝶式雷射模組之結構與構裝流程 26
3-1 蝶式雷射模組結構 26
3-1-1 內部結構 26
3-1-2 外部結構與尺寸 30
3-2 蝶式雷射模組之構裝流程 32

第四章 銲後位移之量測與實驗結果 44
4-1 造成銲後位移的原因 44
4-2 蝶式模組銲後位移的量測方式 45
4-3 馬鞍與光纖套管的設計 48
4-4-1 銲後位移的實驗結果 51
4-4-2 實驗結果分析 57
4-4-3 金相分析的結果 60
4-4-4 實驗結論 61
4-5 Y軸的銲後位移的模擬 62
第五章 結論與未來工作 65
5-1 結論 65
5-2 未來工作 66
1.Y. Lin, W. Liu, and F. G. Shi, “Laser Welding Induced Alignment Distortion in Butterfly Laser Module Packages: Effect of Welding Sequence,” IEEE Transactions on Advanced Packaging, Vol. 25, No. 1, pp. 73-78 (2002).
2.J.H. kuang, M.T. Sheen, S.C. Wang, G.L. Wang, and W.H. Cheng, “Post-Weld-Shift in Dual-in-line Laser Package,” IEEE Transactions on Advanced Packaging, Vol.25 , No. 1, pp. 81-85 (2001).
3.M. W. Park, J. R. Kim, S. Park, J. S. Lee, H. I. Kim, A. G. Choo, T. I. Kim, “Lens less Semiconductor Optical Amplifier (SOA) Modules Using Laser Welding Techniques”, IEEE Electronic Components and Technology Conference, pp.733-735 (2000).
4.S. Jang, “Automation Manufacturing Systems Technology for Optoelectronic Device Packaging”, IEEE Electronic Components and Technology Conference, pp.10-14 (2000).
5.P. Mueller, B. Valk, “Automated Fiber Attachment for 980nm Pump Modules”, IEEE Electronic Components and Technology Conference, pp.5-9 (2000).
6.S. G. Kang, M. K. Song, S. S. Park, S. H. Lee, N. Hwang, H. T. Lee, K. R. Oh, G. C. Joo, and D. Lee, “Fabrication of Semiconductor Optical Switch Module Using Laser Welding Technique”, IEEE Electronic Components and Technology Conference, pp.672-680 (2000).
7.J.H. kuang, M.T. Sheen, S.C. Wang, and W.H. Cheng., “Crack Formation Mechanism in Laser Welded Au-coated materials for Semiconductor Laser Packages” , IEEE Transactions on Components, Packaging, and Manufacturing Technology, Part B, Vol. 22, No.1, pp 94-100(1999).
8.J. H. Lau, Y. H. Pao, “Solder Joint Reliability of BGA, CSP, Flip Chip, and Fine Pitch SMT Assemblies”, New York : McGrew-Hill (1997).
9.M. K. Song, S. G. Kang, N. Hwang, H. T. Lee, S. S. Park, and K. E. Pyum, “Laser Weldability Analysis of High-Speed Optical Transmission Device Packaging”, IEEE Transactions on Components, Packaging, and Manufacturing Technology, Part B, Vol.19, No.4, pp.758-763, November (1996).
10.S. Jang, “Packaging of Photonic Devices Using Laser Welding”, SPIE, Laser Diode Chip and Packaging Technology, Vol. 2610 ,pp.138-149, October (1995).
11.B. Valk, R. Battig, O. Anthamatten, “Laser Welding for Fiber Pigtailing with Long-term Stability and Submicron Accuracy”, Optical Engineering ,Vol. 34, No.9, pp.2675-2682, September (1995).
12.W. H. Cheng, W. H. Wang, and Y. M. Huang, “Failure Mechanism of Hole Formation in Laser Welding Technique For optoelectronic Packaging”, IEEE Electronic Components and Technology Conference, pp.914- 916 (1995).
13.N. Kalonji, J. Tanniou and M. Foucher, “Packaging Technology for Wide Bandwidth High Optical Coupling Pigtailed Optoelectronic Modules”, IEEE Electronic Components and Technology Conference, pp.777- 779 (1995).
14.Y.Oikawa, H.Kuwatsuka, T. Yamamoto, T. Ihara, H. Hamano, T. Minami, “Packaging Technology for 10-Gb/s Photoreceiver Module” Journal of Lightwave Technology, Vol 12, No. 2, February (1994)
15.鄭木海博士, “雷射二極體構裝技術之近況與趨勢”,光訊,第69 期, 1997年12月.
16.周敏傑,劉決弘,莊運清,賴文郎,楊志文, “雷射加工技術手冊” 工研院機械所,78年12月.
17.林三寶, “雷射原理與應用”,全華科技圖書,79年11月
18.施性坤,“雷射銲接技術構裝雷射模組之銲後位移研究”,中山大學光電工程所碩士論文,90年6月.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊