(3.215.183.251) 您好!臺灣時間:2021/04/23 14:19
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:郭玟婷
研究生(外文):Wen-Ting Kuo
論文名稱:以X-射線光電子能譜探測氮化物半導體微觀研究
論文名稱(外文):Probing the Microstructure of Nitride-Based Semiconductors by X-ray Photoelectron Spectroscopy
指導教授:賴聰賢
指導教授(外文):Tsong-Sheng Lay
學位類別:碩士
校院名稱:國立中山大學
系所名稱:光電工程研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2003
畢業學年度:91
語文別:中文
論文頁數:74
中文關鍵詞:X-射線光電子能譜氮化物半導體
外文關鍵詞:X-ray Photoelectron SpectroscopyNitride-Based Semiconductors
相關次數:
  • 被引用被引用:1
  • 點閱點閱:126
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
近年來含氮的三五族半導體材料逐漸地受到重視與研究,如:氮砷化鎵、氮砷化銦鎵等,不只是因其特殊的材料特性,還有在元件應用上的優勢。本研究旨在對一系列氮化物半導體進行材料及電子結構的研究,實驗上以新竹同步輻射中心光源之X-射線光電子能譜量測分析在不同的成長及後級高溫回火條件下之樣品結構。
經由光電子能譜偵測氮砷化銦鎵,在與一系列氮化物半導體,如:氮砷化鎵、氮砷化銦、氮化銦、氮化鎵及砷化銦鎵、砷化鎵進行比較後,得到實驗結果與分析,成功地證實低含氮的三五族化合物半導體中確實含有氮原子的存在。對InGaAsN以Ar+轟擊清除表面氧化層後,N有兩種鍵結的形式,分別為N-In、N-Ga鍵結,而利用譜峰面積計算兩種N鍵結的莫耳分率,在InGaAsN中N-In / In-Ga鍵結量的比值大於3,可知N的鍵結是以N-In鍵結形式為主,再利用同樣的方法計算樣品中氮含量,由XPS實驗計算得的N莫耳分率均小於MBE磊晶參數值。在比較回火前後的InGaAsN,可得經熱退火處理會增加樣品氮的莫耳分率,且可觀察到N-In和N-Ga鍵結均有增加,而N-In / N-Ga鍵結量的比值仍大於2,因此經熱退火後,氮的鍵結形式維持以N-In為主。
Incorporation of nitrogen into Ⅲ-Ⅴ materials such as GaAsN and InGaAsN, have recently drawn much attention, due to the unique properties as well as potential device applications of such materials. The purpose of this thesis is to probe microscopic compositions and electronic structures in a series of N-based semiconductor compounds. For the material and electronic structure characterizations, X-ray photoelectron spectroscopy (XPS) with synchrotron radiation beam was adopted to analyze the sample quality under different growth and post-growth thermal annealing.
Through detection of samples of InGaAsN in comparison with a series of samples of GaAsN, InAsN, InN, GaN, InGaAs and GaAs, the experimental result and analysis. Now X-ray photoelectron spectroscopy investigation on Ⅲ-Ⅴalloys containing a few percentage of nitrogen demonstrated the success of nitrogen incorporation. X-ray photoelectron spectroscopy investigation on InGaAsN films and curve fitting analysis, it can provide evidence of the existence of two principle N configurations, indicating the formation of N-In, N-Ga bonds. Through an estimation of the sample surface composition was made on the basis of the peak area: N-In/N-Ga larger than 3, it can provid direct evidence of the presence of preferential bonding of N to In. The incorporation of atomic nitrogen was added during the annealing. Right through X-ray photoelectron spectroscopy in annealed InGaAsN film can N-In and N-Ga bonds be observed to be increase, but N-In/N-Ga larger than 2, The bonds of atomic nitrogen is still N-Ga bonds.
第一章 緒論 1
1-1 前言 1
1-2 研究目的 4
1-3 論文架構 5
第二章 氮化物半導體 6
2-1 氮化鎵 6
2-2 氮砷化鎵 7
2-3 氮砷化銦鎵 7
2-3-1 高溫回火 7
2-4 氮砷化銦 8
2-5 氮化銦 8
第三章 實驗原理與方法 10
3-1 X射線光電子能譜 11
3-2 同步輻射 13
3-2-1 原理 14
3-2-2 插件磁鐵 14
3-3 實驗儀器 15
3-3-1 真空系統 15
3-3-2 分析組件 16
3-4 實驗步驟 18
第四章 實驗結果與討論 19
4-1 氮砷化鎵 20
4-2 氮砷化銦鎵 25
4-2-1 氮砷化銦鎵/磷化銦 25
4-2-2 熱退火處理 32
4-2-3 氮砷化銦鎵/砷化鎵 40
4-2-4 氮砷化銦鎵之比較 47
4-3 氮砷化銦 51
4-4 氮化銦 55
4-5 氮化物半導體之比較 60
第五章 氧化鎵-氮化鎵介面 64
5-1 前言 64
5-2 實驗結果與討論 65
第六章 結論 71
參考文獻 73
[1]時定康,王智祥,林浩雄,“氮砷化銦量子井特性研究及其應用”, 物理雙月刊,二十三卷,六期,pp. 661-666,2001.
[2]M. Kondow, K. Uomi, A. Niwa, T. Kitatani, S. Watahiki and Y. Yazawa, “GaInNAs: A Novel Material for Long-Wavelength-Range Laser Diodes with Excellent High-Temperature Performance,” Jpn. J. Phys., Vol. 35, pp. 1273-1275, 1996.
[3]W. Chang, J. Lin, W. Zhou, S.J. Chua, and Z.C. Feng, “Photoluminescence and photoelectron spectroscopic analysis of InGaAsN grown by metalorganic chemical vapor deposition,” Appl. Phys. Lett., vol. 79, pp. 4497-4499, 2001.
[4]王智祥,“以氣態源分子束磊晶法成長(氮)砷化銦材料及光電元件之研究”,國立台灣大學電機工程研究所博士論文,2000.
[5]P.J. Klar, H. Gruning, J. Koch, S. Schäfer, K. Volz, W. Stolz, W. Heimbrodt, A.M. Kamal Saadi, A. Lindsay, and E. P. O′Reilly, “(Ga,In)(N,As)-fine structure of the band gap due to nearest-neighbor configurations of the isovalent nitrogen,” Phys. Rev. B, vol. 64, 121203 (R), 2001.
[6]Ding-Kang Shih, Hao-Hsiung Lin and Y.H. Lin, “InAs0.97N0.03/InGaAs/InP multiple quantum well lasers with emission wavelength l = 2.38mm,” Electron. Lett., vol. 37, pp. 1342-1343, 2001.
[7]Q.X. Guo, M. Nishio, and H. Ogawa, “Electron structure of indium nitride studied by photoelectron spectroscopy,” Phys. Rev. B, vol. 58, pp. 304-306, 1998.
[8]E. Schröder-Bergen and W. Ranke, “The structure-sensitive adsorption of H2O and H2S on flat and stepped Si(100) surfaces,” Surf. Sci., vol. 236, pp. 103-111, 1990.
[9]J.F. Moulder, W.F. Stickle, P.E. Sobol and K.D. Bomben, in Handbook of X-ray Photoelectron Spectroscopy, edited by Jill Chastain.
[10]P. Hill, J. Lu, L. Haworth, D.I. Westwood and J.E. Macdonald, “An XPS study of the nitrogen exposure time and temperature on the GaAs(001) surface using atomic nitrogen,” Appl. Surf. Sci., vol. 123/124, pp. 126-130, 1998.
[11]H. Engelhard, J.A. Schaefer, F. Stietz, A. Goldmann, R. Fellenberg and W. Braun, “Interaction of gold with InP(100) 4×2 surfaces,” Surf. Sci., vol. 276, pp. 21-26, 1992.
[12]李宗翰,“氮化銦薄膜之成長與光電特性研究”,輔仁大學物理學研究所碩士論文,2000.
[13]黃光漢,“氧化鎵釓-砷化鎵介面之-射線光激頻譜之研究”,國立中山大學光電工程研究所碩士論文,2000.
[14]廖意瑛,“以X-射線螢光術微探高介電層-半導體介面之研究”,國立台灣大學光電工程研究所碩士論文碩士論文,2001.
[15]巫漢敏,“氮化鎵金氧半電容元件之製作與特性研究”,國立台灣大學光電工程研究所碩士論文,2001.
[16] Kwiseon Kim, and Alex Zunger, “Spatial Correlations in GaInAsN Alloys and their Effects on Band-Gap Enhancement and Electron Localization,” Phys. Rev. Lett., vol. 86, pp. 2609-2612, 2001.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔