跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.82) 您好!臺灣時間:2025/02/19 09:12
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:盧宥任
研究生(外文):Yu-Jen Lu
論文名稱:高濃度梯度摻釹釔鋁石榴石晶纖雷射之研製
論文名稱(外文):The Study and Fabrication of High Doping Gradient Nd:YAG Crystal Fiber Laser
指導教授:黃升龍
指導教授(外文):Sheng-Lung Huang
學位類別:碩士
校院名稱:國立中山大學
系所名稱:光電工程研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
畢業學年度:91
語文別:中文
論文頁數:57
中文關鍵詞:晶纖雷射
外文關鍵詞:Nd:YAG crystal fiber laser
相關次數:
  • 被引用被引用:4
  • 點閱點閱:188
  • 評分評分:
  • 下載下載:12
  • 收藏至我的研究室書目清單書目收藏:0
中文摘要

近年來光電技術發展迅速,因而順勢推動半導體雷射幫浦固態雷射之發展。本研究目的是希望結合半導體雷射體積輕、薄、短、小及固態雷射高峰值功率與高品質輸出模態的優點,開發出轉換效率高、壽命長、結構簡單、散熱容易,但增益介質體積卻比原塊材少千分之一的晶體光纖雷射系統。

生長晶體的方法有許多種,本實驗室採用LHPG (laser heated pedestal growth) 法生長晶體光纖,此方法具生長速度快,控制容易及無坩堝污染等優點。目前可生長出23~365um之高品質Nd:YAG晶體光纖,並且發現在其橫截面上Nd離子濃度有內高外低的分布,進而使得光在此晶體光纖傳輸過程中有自聚焦的現象。使用直徑220um峰值濃度達1.6-atm.%的Nd:YAG晶體光纖,本實驗室已發表斜率效率達28.9%,輸出功率145mW的實驗結果 。

若適當的控制生長速度及縮徑比,可生長出直徑125um,外圍Nd濃度約0.8-atm%,峰值濃度達3.6-atm%的Nd:YAG晶體光纖,而濃度差所造成峰值與周圍折射率差平均值,從0.0036增加到0.0076。此折射率分佈對於光傳輸可產生集光效果,期望有助於降低晶體光纖內部的傳輸損耗,提升雷射斜率效率。
The rapid developments in optical and electronic technologies have accelerated developments of solid state laser technology. The diode-pumped solid state laser has the merits of the diode laser, such as compactness, low cost, and the merits of the solid state laser, such as high laser quality, high conversion efficiency, long lifetime, and simple structure. There use in laser applications is very cost-effective in terms of material consumption, which is typically one-thousandth that of bulk material. In addition, heat dissipation in the gain medium can be significantly alleviated because highly heat-conductive material can be applied to the circumference of the crystal fiber. So, it was applicated in electronics, communication and medicine widely.
The laser-heated pedestal growth (LHPG) method is now a well-established technique for the growth of single-crystal fibers. It is crucible free and can therefore produce high-purity, low-defect-density single crystals. Interface loss is one of the dominant factors that reduce the efficiency of crystal fiber lasers, although cladding with a dielectric coating or in-diffusion of the gain core has been utilized to suppress this interface loss. Using a gradient-index Nd:YAG crystal fiber with peak Nd concentration up to 1.6-atm.%, we recently demonstrated a laser power of 145 mW and slope efficiency 28.9%.
Peak Nd concentration up to 3.6-atm.% Nd:YAG crystal fiber with a 20-um core was grown, which could eliminate the interface loss and enhance the efficiency of crystal fiber lasers to be compatible with bulk solid-state lasers.
第一章 緒論 1
第二章 Nd:YAG晶體光纖雷射原理與元件製作 5
2.1 晶體特性 5
2.2 能階模型 8
2.3 傳輸模態 15
2.4 晶體生長方法 19
2.5 元件金相分析製程 24
第三章 Nd:YAG晶體光纖生長與量測 31
3.1電子微探儀之基本原理 31
3.2鍍碳技術 34
3.3生長參數與Nd濃度分佈之關係 36
3.4高濃度梯度晶體光纖 41
第四章 Nd:YAG晶體光纖雷射製作 43
4.1 光學鍍膜 43
4.2 晶纖雷射輸出特性量測 45
第五章 結論 50
參考資料 52
中英對照表 55
[1]R. L. Byer, “Diode Laser-Pumped Solid-State Laser,” Science, vol. 239, pp. 742-747, February 1988.
[2]霍玉晶,黃哲林,段玉生,周炳琨,“LD泵浦的整體式CW Nd:YAG單晶光纖激光器”,中國激光,第17卷,第12期,1990年。
[3]J. L. Nightingale and R. L. Byer, “Monolithic Nd:YAG Fiber Laser,” Opt. Lett., vol. 11, no. 7, pp. 437-439, July 1986.
[4]M. M. Fejer, J. L. Nightingale, G. A. Magel and R. L. Byer, “Laser-Heated Miniature Pedestal Growth Apparatus for Single-Crystal Fibers,” Rev. Sci. Instrum., vol. 55, no. 11, pp. 1791-1796, November 1984.
[5]D. B. Gasson and B. Cockayne, “Oxide Crystal Growth using Gas Lasers,” J. of Materials Sci., vol. 5, pp. 100-104, 1970.
[6]J. Stone and C.A. Burrus, “Self-Contained LED-Pumped Single-Crystal Nd:YAG Fiber Laser,” Fiber Integrated Opt., vol. 2, no. 1, pp. 19-46, 1979.
[7]J. Stone and C. A. Burrus, “Neodymium-Doped Fiber Lasers: Room Temperature CW Operation with an Injection Laser Pump,” Appl. Opt., vol. 13, no. 6, pp. 1256-1258, June 1974.
[8]M. M. Fejer, G. A. Magel and R. L. Byer, “High-Speed High-Resolution Fiber Diameter Variation Measurement System,” Appl. Opt., vol. 24, pp. 2362-2368, 1985.
[9]S. Sudo, A. Cordova-Plaza, R. L. Byer and H. J. Shaw, “MgO:LiNbO3 Single-Crystal Fiber with Magnesium-Ion In-Diffused Cladding,” Opt. Lett., vol. 12, pp. 938-940, 1987.
[10]M. J. F. Digonnet, C. J. Gaeta, D. O’Meara and H. J. Shaw, “Clad Nd:YAG Fibers for Laser Applications,” J. of Lightwave Tech., vol. LT-5, no. 5, pp. 642-646, May 1987.
[11]闕文修,姚熹,霍玉晶,“LD泵浦的Nd:MgO:LiNbO3單晶光纖腔外倍頻激光器”,中國激光,第22卷,第8期,1995年。
[12]S.M. Vatnik, “Gain and laser operation of 1.1% Nd:YAG crystal fibers,” Opt. Commun.197, pp.375-378, 2001.
[13]A. Brenier, G. Foulon, M. Ferriol and G. Boulon, “The Laser-Heated-Pedestal Growth of LiNbO3:MgO Crystal Fibers with Ferroelectric Domain Inversion by In Situ Electric Field Poling,” J. Phys. D: Appl. Phys., vol. 30, pp. 37-39, 1997.
[14]C. A. Burrus and J. Stone, “Single-Crystal Fiber Optical Devices: A Nd:YAG Fiber Laser,” Appl. Phys. Lett., vol. 26, no. 6, pp. 318-320, March 1975.
[15]I. Shoji, S. Kurimura, Y. Sato, T. Taira, A. Ikesue, and K.Yoshida, “Optical properties and characteristics of highly Nd3+doped Y3Al5O12 ceramics,” Appl. Phys. Lett. ,vol.77, pp.939-941, 2000.
[16]翁義龍,“ 腔內倍頻之被動式Q開關藍光雷射”,國立中山大學光電工程研究所碩士論文,2000年。
[17]W. Koechner, Solid-State Laser Enginnering, 5th Edition, Springer, 1999.
[18]R Lavi, S. Jackel, M. Winik, E. Lebiush, I. Tzuk, M Katz, I. Paiss,“ An efficient pumping scheme for neodymium doped materials by direct excitation of the upper lasing level”, Appl. Opt. ,vol.38, pp.7382-7385, 1999.
[19]R Lavi, S. Jackel, Y. Tzuki, E. Lebiush, M. Winik, I. Paiss and T. Arusi-parpar, “ Enhanced performance of Nd:YAG by direct pumping from thermally excited ground state levels directly to the upper lasing level”,in Advanced Solid-State lasers, OSA, Technical Digest series, paper ME14-1, 2000.
[20]G. P. Agrawal, Fiber-Optic Communication Systems, 2nd Edition, Wiley, 1997.
[21]余樹楨,“晶體之結構與性質”,渤海堂,2000年。
[22]G. A. Magel, M. M. Fejer and R. L. Byer, “Quasi-Phase-Matched Second Harmonic Generation of Blue Light in Periodically Poled LiNbO3,” Appl. Phys. Lett., vol. 56, pp. 108-110, 1990.
[23]L. Hesseling and S. Redfield, “Photorefractive Holographic Recording in Strontium Barium Niobate Fiber,” Opt. Lett., vol. 13, pp. 877-879, 1988.
[24]R. S. Feigelson, D. Gazit and D. K. Fork, “Superconducting Bi-Ca-Sr-Cu-O Fibers Grown by the Laser-Heated Pedestal Growth Method,” Science, vol. 240, pp. 1642-1645, 1988.
[25]張金倉,霍玉晶,何豫生,“激光加熱浮區生長強織構高溫超導晶纖的研究”,中國激光,第20卷,第8期,1993年。
[26]R. S. Feigelson, W. L. Kway and R. K. Route, “Single Crystal Fibers by the Laser-Heated Pedestal Growth Method,” Opt. Eng., vol. 24, no. 6, pp. 1102-1107, 1985.
[27]C. Goutaudier, F. S. Ermeneux, M. T. Cohen-Adad, R. Moncorge, M. Bettinelli and E. Cavalli, “LHPG and Flux Growth of Various Nd:YVO4 Single Crystals: A Comparative Characterization,” Mater. Res. Bull., vol. 33, no. pp. 1457-1465, 1998.
[28]http://www.exploratorium.edu/snacks/disappering_glass_rods.html
[29]L. E. Samuels, Metallographic Polishing by Mechanical Methods, 3rd Edition, ASM, 1982.
[30]行政院國家科學委員會精密儀器發展中心,“材料分析儀器”,儀器總覽,第5卷,1998年。
[31]S.J.B. Reed, Electron microprobe analysis, 2nd Edition, University of Cambridge, 1975.
[32]朱佳汎, “非平衡態之晶體成長過程中所產生的圖案,” 物理會刊,十三卷三期,1990年。
[33]S. Ishibashi and K. Naganuma, “Diode-pumped Cr4+:YAG single-crystal fiber laser,” in Advanced Solid-State Lasers, OSA Technical Digest, pp. 426-430, 2000.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top