跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.172) 您好!臺灣時間:2024/12/07 04:16
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:周雅嵐
研究生(外文):Ya-Lan Chou
論文名稱:附著性無脊椎生物合適棲所量化之初步探討
論文名稱(外文):A preliminary study to quantify the suitable substratum of marine sessile invertebrates.
指導教授:宋克義宋克義引用關係
指導教授(外文):K. Soong
學位類別:碩士
校院名稱:國立中山大學
系所名稱:海洋生物研究所
學門:自然科學學門
學類:海洋科學學類
論文種類:學術論文
論文出版年:2003
畢業學年度:91
語文別:中文
論文頁數:39
中文關鍵詞:附苗附苗強化效應藤壺
外文關鍵詞:intensification phnomenonlarval settlementbarnacle
相關次數:
  • 被引用被引用:1
  • 點閱點閱:266
  • 評分評分:
  • 下載下載:28
  • 收藏至我的研究室書目清單書目收藏:0
海洋生物年週期性的生殖行為可能是為了天然底質年週期性變動的一個適應結果。本研究中擬尋找量化附著性生物合適棲地的方法,進而了解棲地的數量是否真如我們所說是年週期性的變動。
我們假設1公尺的空間尺度為一較為封閉性的環境,試圖尋找1公尺尺度間不同面積的附苗板上是否有附苗強化效應(intensification phenomenon),若真如此,可以利用此現象來估算天然所的供給量。同時並以墾丁跳石海域、核能三廠入水口與後壁湖遊艇碼頭三個區域做不同水流環境對附苗強化效應的影響比較,以進一步了解附苗強化效應發生的可能性。另外由較大的空間尺度來看,礁區與砂區為兩個天然底質不同的區域,在這兩個區域分別放置面積相同的附苗板時,由於礁區的天然底質數量較多,根據附苗強化效應,幼生在附苗板上的附苗密度應在砂區較高。
本研究結果在1公尺的空間尺度下並沒有發現附苗強化現象,但是礁區的附苗密度卻如預期低於砂區,推測可能是1公尺空間尺度內幼生數量過於不均勻,相差5倍的附苗板面積不足以造成幼生附苗密度的變異,而礁區與砂區則由於面積相差相當大因此可以發現附苗強化現象。
Seasonal reproduction of marine sessile organisms may be an adaptation of seasonal variation in suitable substratum availability. This research is focused on how to quantfy the suitable substratum of marine sessile organisms. Then the potential seasonal change of suitable substrate availability can be assessed.

We tested 1-1.5 meters scale is a population closed spatial scale. At this scale we try to find “intensification phenomenon” using different-size panels. If intensification phenomenon dose exist at 1-1.5 meter scale, then the amount of the suitable substratum can be estimated. We also compared three different current environments at Tiaoshi area in Nan-wan-Bay, the 3rd Nuclear Power Plant Inlet and the Hobihu Yacht Wharf to find out if the intensification phenomenon exists at this different situations. Lastly, sand and reef area were compared. Since reef areas has more suitable natural substratum than sand areas.

The intensification phenomenon at 1-meter scale was not found. The larval density in water column might be highly heterogeneous even in very small scale. On the other hand, we consistently found higher settlement density in sand areas than in reef areas. This phenomenon may well have been caused by the intensification phenomenon.
壹、前言 1
貳、材料方法 7
參、結果 11
肆、討論 14
伍、參考文獻 19
吳松霖,1999,華美盤管蟲Hydroides elegans在高雄港內附苗的時空差異。國立中山大學海洋生物研究所碩士論文。
范宏明,1998,南灣海域珊瑚附苗之研究。國立中山大學海洋生物研究所碩士論文。
Armonies, A. 2000. On the spatial scale needed for benthos community monitoring in the coastal North Sea. Journal of Sea Research 43:121-133.
Bertness, M. D., S. D. Gaines, E. G. Stephens, and P. O. Yund. 1992. Components of recruitment in population of the acorn barnacle Semibalanus balanoides (Linnaeus). Journal of Experimental Marine Biology and Ecology 156:199-215.
Butman, C. A. 1986. Larval settlement of soft-sediment invertebrates: the dispersal scales of pattern explained by active habitat selection and the emerging role of hydrodynamical processes. Oceanography and Marine Biology, Annual Review 25:113-165.
Chia, F. S., J. Buckland-Nicks, and C. M. Young. 1984. Locomotion of marine invertebrate: a review. Canadian Journal of Zoology 62:1205-1222.
Connell, J. H. 1985. The consequences of variation in initial settlement vs. post-settlement mortality in rocky intertidal communities. Journal of Experimental Marine Biology and Ecology 93:11-45.
Crisp, D. J., and D. A. Ritz. 1973. Responses of Cirripeda larvae to light. I. Experiments with white light. Marine Biology 23:327-335.
Gaines, S., and J. Roughgarden. 1985. Larval settlement rate: a leading determination of structure in an ecological community of the marine intertidal zone. Proceedings of the National Academy of Science of the United States of America 82(11):3707-3711.
Giese, A. C., and J. S. Pearse. 1974. Introduction: general principles. Pages 1-49 in A. C. Giese and J. S. Pearse editors. Reproduction of marine invertebrates, volume I, Academic Press, New York.
Gosselin, L.A., and P. Y. Qian. 1996. Early post-settlement mortality of an intertidal barnacle: a critical period for survival. Marine Ecology-Progress Series 135:69-75.
Gross, M. G., and E. Gross. 1996. Waves. Pages 230-232 in P. F. Corey editors. Oceanography: a view of earth. Prentice Hall Press, New Jersey.
Hurlbut, C. J. 1991. Community recruitment: settlement and juvenile survival of seven co-occurring species of sessile marine invertebrates. Marine Biology 109:507-515.
Jeffery, C. J. 2000. Settlement in different-sized patches by the gregarious intertidal barnacle chamaesipho tasmanica Forster and Anderson in New South Wales. Journal of Experimental Marine Biology and Ecology 252:15-26.
Lessios, H. A. 1992. Testing electrophoretic data for agreement with Hardy-Weinberg expectations. Marine Biology 112:517-523.
Le Tourneux, F., and E. Bourget. 1988. Importance of physical and biological settlement cues used at different spatial scales by the larvae of Semibalanus balanoides. Marine Biology 97:57-66.
Lee, H. J., S. Y. Chao, and K. L. Fan. 1999. Flood-ebb disparity of tidally induced recirculation Eddies in a semi-enclosed basin: Nan Wan Bay. Continental Shelf Research 19:871-890.
Leonard, G. H., P. J. Ewanchuk, and M. D. Bertness. 1999. How recruitment, intraspecific interactions, and predation control species borders in a tidal estuary. Oecologia 118:492-502.
Levin, L. A., and E. Bridges. 1995. Patterns and diversity in reproduction and development. Pages 123-156 in L. McEdward editors. Ecology of Marine Invertebrate Larvae, CRC Press, Boca Raton.
Liang, N. K., S. L. Lein, W. C. Chen, and H. T. Chang. 1978. Oceanographic investigation in the vicinity of Ma-An-San and Nan Wan bay. Special publication No. 18. National Taiwan University. Taipei.
Maughan, B. C. 2001. The effects of sedimentation and light on recruitment and development of a temperate, subtidal, epifaunal community. Journal of Experimental Marine Biology and Ecology 256:59-71.
Minchinton, T. E., and R. E. Scheibling. 1993. Free space availability and larval substratum selection as determinants of barnacle population structure in a developing rocky intertidal community. Marine Ecology Progress Series 95:233-244.
Osman, R. W., and R. B. Whitlatch. 1995. The influence of resident adult on larval settlement: experiments with four species of ascidians. Journal of Experimental Marine Biology and Ecology 190:199-220.
Pamintuan, I. S., P. M. Alino, E. D. Gomez, and R. N. Rollon. 1994. Early succesional patterns of invertebrates in artificial reefs established at clear and silty areas in Bolinao. Pangasinan, northern Philippines. Bulletin of Marine Science 55(2-3):867-877.
Peterson, J. K., and I. Svane. 1995. Larval dispersal in the ascidian Ciona intestinalis (L.), Evidence for a closed population. Journal of Experimental Marine Biology and Ecology 186:89-102
Pineda, J., 1994. Spatial and temporal patterns in barnacle settlement along a southern California rocky shore. Marine Ecology Progress Series 107:125-138.
Pineda, J., 2000. Linking larval settlement to larval transport: assumptions, potentials, and pitfalls. Oceanography of the Eastern Pacific 1:84-105.
Pineda, J., and H. Caswell. 1997. Dependence of settlement rate on suitable substrate area. Marine Biology 129:541-548.
Roughgarden, J., Y. Iwasa, and C. Baxter. 1985. Demographic theory for an open marine population with space-limited recruitment. Ecology 66(1):54-67.
Todd, C. D. 1998. Larval supply and recruitment of benthic invertebrate: do larval always disperse as much as we believe? Hydrobiologia. 375/376:1-21.
Young, C. M. 1990. Larval ecology of marine invertebrates: a sesquicentennial history. Ophelia 32(1-2):1-48.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top