(3.230.173.249) 您好!臺灣時間:2021/04/21 05:09
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:張書銘
研究生(外文):Shu-Ming Chang
論文名稱:以液相沉積法成長氟氧化矽經過退火的電性研究
論文名稱(外文):The Electrical Properties of Liquid-Phase Deposited SiOF Films with Annealing Treatment
指導教授:李明逵
指導教授(外文):Ming-Kwei Lee
學位類別:碩士
校院名稱:國立中山大學
系所名稱:電機工程學系研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2003
畢業學年度:91
語文別:英文
論文頁數:80
中文關鍵詞:氟氧化矽退火氨水六氟矽酸溫差法
外文關鍵詞:AnnealingNH4OHSiOFH2SiF6TD-LPD
相關次數:
  • 被引用被引用:0
  • 點閱點閱:106
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
隨著整合型超大積體電路的密度增加,多層金屬導線間介電層的製作技術已經越來越重要。而在先進的邏輯元件裡,金屬層中的介電層已經增加到四到五層。二氧化矽通常被用來當作兩金屬導線間的材料。又因為氟氧化矽具有低介電常數的優點,因此被採用作為兩金屬導線間的材料。此種材料雖然具有低介電常數的優點,但水氣的吸收是主要的缺點。因此,我們採用退火來去除在氟氧化矽層的水氣。我們因此可以氧化層的電性和得到一個穩定且介電常數低的氧化膜。
在本篇論文的目的主要是探討利用液相沉積法成長的氟氧化矽,經過退火後的化學性和電性。退火溫度在250度和450度之間,化性和電性能夠被良好的控制。由實驗得知,在40度下成長,加入氨水反應,最後在350度下退火的液相沉積法氟氧化矽可以得到最佳的電性。介電常數可以低至3.2,在1.5 MV/cm下的漏電流密度可以降低到1×10-7 A/cm2。本研究的結果顯示,用液相沉積法加入氨水成長的氟氧化矽,經過退火的處理後,可以做為在兩金屬導線間介電層的材料。
With increasing integration density of very large scale integrated (VLSI) devices, multilevel metallization technology is becoming more important than it used to be. In advanced logic devices, the interlayer dielectrics have increased to four or five layers. Silicon oxide films are used as interlayer film. One candidate for making interlayer film with a low dielectric constant is F-doped Silicon oxide (SiOF). Such films have a low dielectric constant and that moisture absorption is the main drawback in using this material. For this reason, we intend to dehydrate the SiOF films by thermal annealing treatment. It could improve the electrical properties of oxide films and obtain a reliable film with lower dielectric constant.
This is our purpose in this paper to explore the electrical and chemical properties of LPD-SiOF films with annealing treatment. The chemical and electrical properties can be controlled well within 250 ~ 450 ℃ annealing treatment. The LPD-SiOF film deposited at 40 ℃ with 0.8 M NH4OH incorporation and 350 ℃ annealing treatment obtain the best electrical results. The dielectric constant can drop to about 3.2, and the leakage current density can be improved to about 1×10-7 A/cm2 under 1.5 MV/cm. Results of this study demonstrate that the SiOF films prepared by LPD with NH4OH incorporation followed by annealing treatment is suitable for IMD application.
CONTENTS I
LIST OF FIGURES IV
ABSTRACT VI

Chapter 1 Introduction 1
1-1 Background of Fluorinated Silicon Dioxide 1
1-2 Motivation of SiOF with Annealing Treatment 2
1-3 Background of TD-LPD-SiOF 3
1-4 Mechanisms of LPD-SiOF 3
1-5 Advantages of LPD 4

Chapter 2 MOS Theory 6
2-1 Charges and Traps in Oxide Film 6
2-2 Effective Oxide Charge and Interface Trap Charge Effects 6
2-3 Extraction of Interface Trap Properties from the Capacitance 8
2-4 High Frequency Capacitance Method 9
2-4 Measurement of Interface Trap Density 9

Chapter 3 Experiments 10
3-1 Liquid Phase Deposition System 10
3-2 Deposition Procedures 11
3-2-1 Si Wafer Cleaning Procedures 11
3-2-2 Preparation of Deposition Solution 11
3-2-3 Film Growth 12
3-3 Annealing Treatment 13
3-4 Fabrication of MOS Structure 13
3-5 Characteristics 14
3-5-1 Physical and Chemical Properties 14
3-5-2 Electrical Properties 14

Chapter 4 Results and Discussion 16
4-1 Physical Properties of LPD-SiOF Film 16
4-1-1 Deposition of LPD-SiOF Film 16
4-1-2 SEM View of LPD-SiOF Film 16
4-2 Chemical properties of LPD-SiOF Film 17
4-2-1 Analysis of XPS Spectra 17
4-2-2 AES Survey Scan and Depth Profile 18
4-2-3 Analysis of FTIR Spectra 18
4-2-4 Increment of F Content in LPD-SiOF Film 21
4-3 Model of Chemical Reaction for Deposition Mechanism 22
4-4 Model of Annealed LPD-SiOF Mechanism 23
4-5 Electrical Properties of LPD-SiOF Film 24
4-5-1 The C-V Characteristics for LPD-SiOF Film Annealed at Various Temperature 24
4-5-2 The J-E Characteristics for LPD-SiOF Film Annealed at Various Temperature 25
4-5-3 Dielectric Constant Relationship of LPD-SiOF Film with Annealing Treatment 26
4-5-4 Interface Trap Density Relationship of LPD-SiOF Film with Annealing Treatment 26
4-5-5 Summary 27

Chapter 5 Conclusions 29

REFERENCES 31~36
FIGURES 37~66
[1] Y. Nishioka, Y. Ohji, K. Mukai, T. Sugano, Y. Wang, and T. P. Ma “Dielectric Characteristics of Fluorinated Ultradry SiO2,” Appl. Phys. Lett., vol. 54, pp. 1127-1129, 1989.
[2] N. kasai, P. J. Wright, and K. C. Saraswat, “Hot-Carrier-Degradation Characteristics for Fluorine-Incoporated NMOSFET’s,” IEEE Trans. Electron Devices, vol. 37, pp.1426-1431, 1990.
[3] G. Q. Lo, W. Ting, J. H. Ahn, D. L. Kwong, and J. Kuehne, “Thin fluorinated gate dielectrics grown by rapid thermal processing in O2 with diluted NF3,”IEEE Trans. Electron Devices, vol. 39, pp. 148-153, 1992.
[4] H. Kudo, R. Shinohara, S. Takeishi, N. Awaji, and M. Yamada, “Dnsified SiOF Film Formation for Preventing Water Absorption,” Jpn. J. Appl. Phys., vol. 35, pp. 1583-1587.
[5] S. R. Kaluri and D. W. Hess, “Nitrogen Incorporation in Thin Silicon Oxides in a N2O Plasma Effects of Processing Conditions,” J. Electronchem. Soc., vol. 145, pp. 662-668, 1998.
[6] R. Swope, W. S. Yoo, J. Hsieh, S. Shuchmann, F. Nagy, H. te Nijenhuis, and D. Mordo, “Improvement of Adhesion Properties of Fluorinated Silica Glass Films by Nitrous Oxide Plasma Treatment,” J. Electronchem. Soc., vol. 144, pp. 2559-2564, 1997.
[7] F. H. P. M. Habraken and A. E. T. Kuiper, “Silicon Nitride and Oxynitride Films,” Mater. Sci. and Eng. Rev., vol. 12, pp. 123-175, 1994.
[8] S. Takeishi, H. Kudoh, R. Shinohara, A. Tsukune, Y. Satah, H.Miyazawa, H. Harada, and M. Yamada, “Stabilizing Dielectric Constants of Fluorine-Doped SiO2 Films by N2O-Plasma Annealing,” J. Electronchem. Soc., vol. 143, pp. 381-385, 1996.
[9] C. F. Yeh, Y. C. Lee, K. H. Wu, Y. C. Su, and S. C. Lee, “Comprehensive Investigation on Fluorosikicate Glass Prepared by Temperature-Difference-Based Liquid-Phase Deposition,” J. Electronchem. Soc., vol. 147, pp. 330-334, 2000.
[10] H. Nagayama, H. Honda, and H. Kawahara, “A New Process for Silica Coating,” J. Electronchem. Soc., vol. 135, pp. 2013-2016, 1988.
[11] C. F. Yeh, Y. C. Lee, and S. C. Lee, “Reliability of Fluorinated Silicon Oxide Film Prepared by Temperature Difference-Based Liquid Phase Deposition,” J. Electronchem. Soc., vol. 147, pp. 4268-4272, 2000.
[12] A. Hishinuma, T. Goda, M. Kitaoka, S. Hayashi, and H. Kawahara, “Formation of Silicon Dioxide Films in Acidic Solution,” Applied Surface Sci., vol. 48, pp. 405-408, 1991.
[13] C. F. Yeh and C. L. Chen, “Bond-Structure Changes of Liquid-Phase Deposited Oxide (SiO2-xFx) on N2 Annealing,” Appl. Phys. Lett., vol. 66, pp. 938-940, 1995.
[14] S. M. Sze, Physics of Semiconductor Devices, John Wiley & Sons, New York, 2nd Ed., 1981, pp. 379-380.
[15] E. H. Nicollian and J. R. Brews, MOS (Metal Oxide Semiconductor) Physics and Technology, Wiley, New York, 1991, pp. 321-328.
[16] L. M. Terman, “An Investigation of Surface States at a Silicon/Silicon Oxide Interface Employing Metal-Oxide-Silicon Diodes,” Solid-State Electronics., vol. 5, pp. 285-299, 1962.
[17] S. K. Ghandhi, “Etching and Cleaning”, in VLSI Fabrication Principles (2nd ed.), Wiley Interscience, NEW YORK, 1994.
[18] D. Sprenger, H. Bach, W.Meisl, and P. Gutlich, “XPS Study of Leached Galss Surface,” J. Non-Cryst. Solids, vol. 126, pp. 111-129, 1990.
[19] H. Nasu, J. Heo, and J. D. Mackenzie, “XPS Study of Non-Bridging Oxygens in Na2O-SiO2 Gels,” J. Non-Cryst. Solids, vol. 99, pp. 140-150, 1988.
[20] V. L. Shannon and M.Z. Karim, “Study of the Material Properties and Suitability of Plasma-deposited Fluorine-Doped Silicon Dioxides for Low Dielectric Constant Interlevel Dielectrics,” Thin Solid Films, vol. 270, pp. 498-502, 1995.
[21] C. F. Yeh, S. S. Lin, T. Z. Yang, C. L. Chen, and Y. C. Yang, “Performance and off-State Current Mechanisms of Low-Temperature Processed Polysilicon Thin-Film Transistors with Liguid Phase Deposited SiO2 Gate Insulator,” IEEE Trans. Electron Devices, vol. 41, pp. 173-179, 1994.
[22] Y. Nakasaki, H. Miyajima, R. Katsumata and N. Hayasaka, “Ab initio Molecular Orbital Study of Water Absorption and Hydrolysis of Chemical Vapor Deposited SiOF Films I,” Jpn. J. Appl. Phys., Vol. 36, pp. 2533-2544, 1997.
[23] C. F. Yeh and C. L. Chen, “Controlling Fluorine Concentration and Thermal Annealing Effect on Liquid-Phase Deposited SiO2-xFx Films,” J. Electrochem. Soc., Vol. 142, pp. 3579-3583, 1995.
[24] C. G. Van de Walle, F. R. McFeely, and S. T. Pantelides, “Fluorine-Silicon Reactions and Etching of Crystalline Silicon,” Physical Review Letters, vol. 61, pp. 1867-1870, 1988.
[25] K. Byun, W. J. Lee, “Water Absorption Characteristics of Fluorinated Silicon Oxide Films Deposited by Electron Cyclotron Resonance Plasma Enhanced Chemical Vapor Deposition Using SiH4, SiF4 and O2,” Thin Solid Films, vol. 376, pp. 26-31, 2000.
[26] J. S. Chou and S. C. Lee, “Effect of Porosity on Infrared-Absorption Spectra of Silicon Dioxide,” J. Appl. Phys., vol. 77, pp. 1805-1807, 1995
[27] C. F. Yeh, C. L. Chen, and G. H. Lin, “The Physicochemical Properties and Growth Mechanism of Oxide (SiO2-xFx) by Liquid Phase Deposition with H2O Addition Only,” J. Electrochem. Soc., Vol. 141, pp. 3177-3181, 1994.
[28] C. Y. Chang and S. M. Sze, ULSI Technology, McGraw-Hill, New York, p. 60, 1996.
[29] W. A. P. Claassen, H. A. J. T. Vanderpol, A. H. Goemans, and A. E. T. Kuiper, “Characterization of Silicon Oxynitride Films Deposited by Plasma-Enhanced CVD,” J. Electrochem. Soc., vol. 133, pp. 1458-1464, 1986.
[30] C. T. Sah, “Origin of Interface States and Oxide Charges Generated by Ionizing Radiation,” IEEE Transaction on Nuclear Science, Vol. NS-23, pp.1563-1568, 1976.
[31] C. G. Ahn, H. S. Kang, Y. K. Kwon, S. M. Lee, B. R. Ryum, and B. K. Kang, “Oxidation-Induced Traps near SiO2/SiGe Interface,” J. Appl. Phys., vol. 86, pp. 1542-1547, 1999.
[32] Y. B. Park and S. W. Rhee, “Microstructure and Interfacial States of Silicon Dioxide Film Grown by Low Temperature Remote Plasma Enhanced Chemical Vapor Deposition,” J. Appl. Phys., vol. 86, pp. 1346-1354, 1999.
[33] B. C. Kang, S. B. Lee, J. H. Boo, “Growth of TiO2 Thin Films on Si(100) Substrates Using Single Molecular Precursors by Metal Organic Chemical Vapor Deposition,” Surface and Coating Technology, vol. 131, pp. 88-92, 2000.
[34] S. Lee and J. W. Park, “Effect of Fluorine on moisture absorption amd dielectric properties of SiOF films,” Materials Chemistry and Physics, vol. 53, pp. 150-154, 1998.
[35] N. Lifshitz and G. Smolinsky, “Hot-Carrier Aging of the MOS Transistor in the Presence of Spin-on Glass as the Interlevel Dielectric,” IEEE Electron Device Lett., vol. 12, pp. 140-142, 1991.
[36] K. Murase, “Dielectric Constant of Silicon Dioxide Deposited by Atmospheric-Pressure Chemical Vapor Deposition Using Tetraethylorthosilicate and Ozone,” Jpn. J. Appl. Phys., Vol. 33, pp. 1385-1389, 1994.
[37] K. M. Chang, S. W. Wang, T. H. Yeh, C. H. Li, and J. J. Luo, “Leakage Performance and Breakdown Mechanism of Silicon-Rich Oxide and Fluorinated Oxide Prepared by Electron Cyclotron Resonance Chemical Vapor Deposition,” J. Electrochem. Soc., vol. 144, pp. 1754-1759, 1997.
[38] T. Sakurai and T. Sugano, “Theory of continuously distributed trap states at Si-SiO2 interfaces,” J. Appl. Phys., vol. 52, pp. 2889-2896, 1981.
[39] C. F. Yeh, Shyue Shyh Lin, “Effects of Plasma Treatment on The Properties of Room-Temperature Liquid-Phase Deposited (LPD) Oxide Films,” J. Non-Cryst. Solids, vol. 187, pp. 81-85, 1995.
[40] H. Fukuda, M. Yasuda, and T. Lwabuchi, “Process Dependence of the SiO2/Si(100) Interface Trap Density of Ultrathin SiO2 films,” J. Appl. Phys., vol. 72, pp. 1906-1911, 1992.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔