參考文獻
[1] Pickering, F. B., “Inclusions,” The Institution of Metallurgists, (1979).
[2] Roland Kiessling, “Non-metallic inclusions in steel,” The Institute of Metals, (1968).
[3] Roland Kiessling, “Non-metallic inclusions in steel,” The Metals Society, (1989).
[4] Iron, G. A., Kay, D. McCutcheon, A. R. D., “On the effects and control of inclusions and residuals in steels,” The Canadian Institute of Mining and Metallurgy, (1986).
[5] Hilty, D. C. D. and Kay, A. R., “Electric furnace steelmaking,” Chapter 18.
[6] Van Vlack, L. H., “Oxide inclusion in steel,” International Metals Reviews, September, pp.187-227 (1977).
[7] Stahlberg, U., “Influence of spread and stress on the closure of a central longitudinal hole in the hot rolling of steel,” Journal of Mechanical Working Technology, Vol.13, pp.65-81 (1986).
[8] MSC/NASTRAN, “MSC NASTRAN linear static analysis user’s guide,” MSC International Company (1973).
[9] LS-DYNA3D, “Introduction to LS-DYNA3D,” Livermore Software Technology Corporation (LSTC) (1987).
[10] MARC, “Introduction to MARC,” MARC Software International Company (1976).
[11] ANSYS, “Introduction to ANSYS,” ANSYS Software International Company (1970).
[12] PATRAN/P3, “Introduction to PATRAN/P3,” MSC International company (1973).
[13] I-DEAS, “I-DEAS master series,” Structural Dynamics Research Corporation (1979).
[14] Li, G. J., Wu, W. T., Arvind, A. and Tang, J. P., “3D finite element analysis of industrial metal forming processes,” Advanced Technology of Plasticity, Vol.1, pp.479-484 (1996).
[15] Hosford, W. F. and Caddell, R. M., “Metal forming- mechanics and metallurgy,” Prentice-Hall, Inc., N., (1983).
[16] Kobayashi, S., Oh, S. I. And Altan, T, “Metal forming and the finite-element method,” Oxford university press, New York (1989).
[17] von Karman, Th, “On the theory of rolling,” Z. Angew. Math. Mech, Vol.5, pp.130-140 (1925).
[18] Nadai, A., “The forces required for rolling steel strip under tension,” Journal of Applied Mechanics, Transactions ASME, Vol.6, pp.54-62 (1939-6).
[19] Mori, K. Osakada, K. and Oda, T. “Simulation of plane-strain rolling by the rigid-plastic finite element method,” International Journal of Mechanical Sciences, Vol.24, pp.519-527 (1982).
[20] Li, G. J. and Kobayashi, S., “Rigid-plastic finite-element analysis of plane strain rolling,” Journal of Engineering for Industry, Transactions ASME, Vol.104, pp.55-64 (1982).
[21] Shivpuri, R. and Chou, P. C., “A comparative study of slab, upper bound and finite element methods for predicting force and torque in cold rolling,” International Journal of Machine Tools & Manufacture, Vol.29, No.3, pp.305-322 (1989).
[22] Liu, C., Hartley, P., Sturgess, C. N. and Rowe, G. W., “Elastic-plastic finite –element modelling of cold rolling of strip,” International Journal of Mechanical Sciences, Vol.27, pp.531-541 (1985).
[23] Pillinger, I., “Numerical modelling of material deformation processes (edited by P. Hartley et al.),” Springer-Verlag, London, pp.225-232 (1992).
[24] Johnson, W. and Needham, G., “Further experiments in asymmetrical rolling,” International Journal of Mechanical Sciences, Vol.8, pp.443-455 (1966).
[25] Pan, D. and Sansome, D. H., “An experimental study of the effect of roll speed mismatch on the rolling load during the cold rolling of thin strip,” Journal of Mechanical Working Technology, Vol.6, pp.361-377 (1982).
[26] Pospiech, J., “A note on the influence of some factors affecting curvature in the flat rolling of strip,” Journal of Mechanical Working Technology, Vol.15, pp.69-80 (1987).
[27] Dewhurst, P., Collins, I. F. and Johnson, W., “A theoretical and experimental investigation into asymmetrical hot rolling,” International Journal of Mechanical Sciences, Vol.16, pp.389-397 (1974).
[28] Collins, I. F. and Dewhurst, P., “A slipline field analysis of asymmetrical hot rolling,” International Journal of Mechanical Sciences, Vol.17, pp.643-651 (1975).
[29] Hwang, Y. M. and Tzou, G. Y., “A analytical approach to asymmetrical cold strip rolling using the slab method,” ASM Journal of material Engineering Performance, Vol.2, pp.597-606 (1993).
[30] Hwang, Y. M. and Tzou, G. Y., “Analytical and experimental study on asymmetrical sheet rolling,” International Journal of Mechanical Sciences, Vol.39, pp.298-303 (1997).
[31] Richelsen, A. B., “Numerical analysis of asymmetrical rolling accounting for differences in friction,” Journal of Materials Processing Technology, Vol.45, pp.149-154 (1994).
[32] Richelsen, A. B., “Elastic plastic analysis of the stress and strain distributions in asymmetrical rolling,” International Journal of Mechanical Sciences, Vol.39, pp.1199-1211 (1997).
[33] 神居詮正, 寺門良二, “Study of the rolling-method of hot finishing tandem mill by rolls with different diameters,” 塑性シ加工, Vol.17, No.191, pp.966-972 (1976-12).
[34] 馬場和史, 西島真也, 大本志宏, 古井誠, 平石順一, 西崎宏, “Development of warp sensor for longitudinal warp control system in plate rolling,” 塑性シ加工, Vol.33, No.373, pp.168-173 (1992-2).
[35]中島浩衛, 大上哲郎ヘ, “板材ソ非對稱壓延ズ關エペ研究,” 第一報、第二報, 昭和53年塑性加工春季演講會, pp.25-32 (1978).
[36] 中島浩衛, 山本普康ヘ,“同徑異周速壓延特性ズ及ニエ摩擦係數ソ影響ズ,” 第四報,第五報,第31回塑性加工連合講演會, pp.451-458 (1980).
[37] Park, B. H. and Hwang, S. M., “Analysis of front end bending in plate rolling by the finite element method,” Journal of Manufacturing Science and Engineering, Transactions ASME, Vol.119, pp.314-323 (1997).
[38] 陳育川,“非對稱壓延板材曲率變化之實驗研究,” 碩士論文, 國立中央大學機械工程研究所, 中壢 (1996).[39] Lenard, J. G., “Effect of temperature on the coefficient of friction in flat rolling,” Int Inst for Production Engineering Research, Vol.40, No.1, pp.223-226 (1991).
[40] Lundberg, S. E., “New high-temperature test rig for optimization of materials for hot-rolling rolls,” Journal of Materials Processing Technology, Vol.36, No.3, pp.273-301 (1993).
[41] Aiyedun, P. O., Sparling, L. G. M. and Sellars, C. M., “Temperature changes in hot flat rolling of steels at low strain rates and low reduction,” Journal of Engineering Manufacture, Vol.211, B4, pp.261-383 (1997).
[42] Shiomi, M., Moori, K. I. and Osakada, K., “Finite element and physical simulations of non-steady state metal flow and temperature distribution in twin roll strip casting,” Welding and Advanced Solidification Processes, Sep, pp.793-800 (1995).
[43] Lahoti, G. D., Shah, S. N. and Altan, T., “Computer-aided analysis of the deformations and temperatures in strip rolling,” Journal of Engineering for Industry, Transactions ASME, Vol.100, pp.159-166 (1978).
[44] Atack, P., Connelly, S. and Robinson, I. S., “Control of thermal camber by spray cooling when hot rolling aluminum,” Ironmaking and Steelmaking, Vol.23, No.1, pp.69-73 (1996).
[45] Kiuchi, M. and Hsiang, S. H., “Two-dimensional analysis of closing behaviors of internal porosity ─ study on application of limit analysis to rolling process ˙lst Report─,” Journal of the Japan Society for Technology of Plasticity, Vol.22, pp.927-934 (1981).
[46] Kiuchi, M. and Hsiang, S. H., “The influence of temperature distribution in thickness direction on porosity-closing behaviors and the investigation into closing behaviors of three-dimensional porosity ─ study on application of limit analysis to rolling process ˙2nd Report─,” Journal of the Japan Society for Technology of Plasticity, Vol.22, pp.1215-1222 (1981).
[47] Pietrzyk, M., Kawalla, R. and Pircher, H., “Simulation of the behavior of voids in steel plates during hot rolling,” Steel Research, Vol.66, pp.526-529 (1995).
[48] Shiro, T. and Mikio, M. Kiminori N. Kiyoshi, E. Kouji, F. and Masamichi, T., “Numerical simulation of rolling of bloom with a hole—soft reduction rolling of continuously cast bloom,” Journal of the Japan Society for Technology of Plasticity, Vol.31, pp.398-405 (1990).
[49] Wang, P. T. and Karabin, M. E., “Evolution of porosiy during thin plate rolling of power-based porous aluminum,” Powder Technology, Vol.78, pp.67-76 (1994).
[50] Wallero, A., “Closing of a central longitudinal pore in hot rolling,” Journal of Mechanical Working Technology, Vol.12, pp.233-242 (1985).
[51] Stahlberg, U. and Keife, H., “Study of hole closure in hot rolling as influenced by forced cooling,” Journal of Materials Processing Technology, Vol.30, pp.131-135 (1992).
[52] Stahlberg, U., Keife, H. and Lundberg, M., “A study of void closure during plastic deformation,” Journal of Mechanical Working Technology, Vol.4, pp.51-63 (1980).
[53] Keife, H. and Stahlberg, U., “Influence of pressure on the closure of voids during plastic deformation,” Journal of Mechanical Working Technology, Vol.4, pp.133-143 (1980).
[54] Wang, A., Thomson, P. F. and Hodgson, P. D., “A study of pore closure and welding in hot rolling process,” Journal of Materials Processing Technology, Vol.60, pp.95-102 (1996).
[55] Dudra, S. P. and Im, Y. T., “Analysis of void closure in open-die forging,” International Journal of Machine Tools & Manufacture, Vol.30, pp.65-75 (1990).
[56] Shah, K. N., “Finite element simulation of internal void closure in open-die press forging,” Advanced Manufacturing Processes, Vol.1, pp.501-516 (1986).
[57] Higuchi, Y., Numata, M., Fukagawa, S. and Shinme, K., “Effect of method of Ca treatment on composition and shape of non-metallic inclusions,” Journal of the Iron and Steel Institute of Japan, Vol.82, No.8, pp.671-676 (1996).
[58] Garcia, C. I., Pytel, S. and Deardo, A. J., “Effect of non-metallic inclusions on the hot ductility of continuously cast low-alloy steel,” Fracture Control of Engineering Structures, Proceedings of the 6th Biennial European Conference on Fracture, pp.1811-1823 (1986).
[59] Gladman, T., “Developments in inclusions control and their effects on steel properties,” Ironmaking and Steelmaking, Vol.19, No.6, pp.457-463 (1992).
[60] Johansson, S., “Computer aided manual image analysis for assessment of non-metallic inclusions in steel,” Scandinavian Journal of Metallurgy, Vol.19, No.2, pp.79-81 (1990).
[61] Norris, S. D., Parker, J. D., “Effect of microstructure on fracture mechanisms of 2•25Cr1Mo low alloy steel, park A: the influence of non-metallic inclusions,” International Journal of Pressure Vessels and Piping, Vol.67, No.3, pp.317-327 (1996).
[62] Yamada, W., Matsumiya, T., Fukumoto, Sh. Wajima, M. and Tanaka, H., “Development and application of computer simulation techniques for analyzing composition, particle size distribution, and amount of nonmetallic inclusions in steel,” Nippon Steel Technical Report, Vol.67, pp.21-28 (1995).
[63] Bystrzycki, J. and Varin, R. A., “Microstructure of a two-phase &gamma prime (Ni3Al)-&gamma (Ni(Al)) intermetallic alloy after cold-rolling and annealing,” Journal of Materials Science Letters 17, Vol.16, pp.1375-1380 (1998).
[64] Roberts, W. and Lehtinen B., “An in situ SEM study of void development around inclusions in steel during plastic deformation,” Acta Metallurgica, Vol.24, pp.745-758 (1976).
[65] Goods, S. H. and Brown, L. M., “The nucleation of cavities by plastic deformation,” Acta Metallurgica, Vol.27, pp.1-15 (1979).
[66] Argon, A. S., Im, J. and Safoglu, R., “Cavity formation from inclusions in ductile fracture,” Metallurgical Transactions A, Vol.6A, pp.825-837 (1975).
[67] Luo, C. and Stahlberg, U., “Deformation of inclusions during hot rolling of steels,” Journal of Materials Processing Technology, Vol.114, pp.87-97 (2001).
[68] 鄒國益,“應用切片法於非對稱板材軋延之研究,” 博士論文, 國立中山大學機械工程研究所, 高雄 (1995).[69] 陳正宗、洪宏基,“邊界元素法,” 台北新世界出版社, 第374-377頁(1992).
[70] Kobayashi, S., Oh, S. I. and Altan, T., “Metal forming and the finite-element method,” Oxford university press, New York (1989).
[71] 山田嘉昭編著,“非線性有限元素法基礎”,亞東書局,台北 (1985).
[72] Thomsen, E. G., Yang, C. T. and Kobayashi, S., “Mechanics of plastic deformation in metal processing,” The Macmillan Co., New York (1965).
[73] Annual book of ASTM standards Metals Test Methods and Analytical Procedures (1993).
[74] Lee, C. H., and Altan, T., “Influence of flow stress and friction upon metal flow in upset forging of rings and cylinders,” Journal of Engineering for Industry, Transactions ASME, pp.775-782 (1972).