(100.26.179.251) 您好!臺灣時間:2021/04/21 22:48
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:詹益豪
研究生(外文):I-Hao Chan
論文名稱:超音波誘發豐年蝦卵活化及助長之研究
論文名稱(外文):The Biological Activation of Artemia Cyst Induced by Ultrasound Exposure
指導教授:楊旭光楊旭光引用關係
指導教授(外文):Shiuh-Kuang Yang
學位類別:碩士
校院名稱:國立中山大學
系所名稱:機械與機電工程學系研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2003
畢業學年度:91
語文別:中文
論文頁數:164
中文關鍵詞:生物技術豐年蝦卵超音波共振頻率
外文關鍵詞:UltrasoundResonance frequencyBiotechnologyArtemia Cyst
相關次數:
  • 被引用被引用:7
  • 點閱點閱:405
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:80
  • 收藏至我的研究室書目清單書目收藏:0
本研究的目的在於發展出超音波聲場對浮游甲殼生物-豐年蝦,其休眠卵於孵化過程的活化及助長效應,以呈現「建設性超音波生物效應」的完整面貌。過去的超音波生物效應研究,起初是為了建立超音波的安全使用範圍,故以高強度的超音波照射細胞組織或生物體,以瞭解生體組織被破壞的聲場強度臨界值。而超音波應用在食品工業與生化醫學上,大都是以高強度的聲場破壞細胞或組織,用以消毒殺菌食品或藉以獲得組織內相關的化學成份及破壞病變組織,因此超音波在過去的生物效應上多被定位為破壞與消除,僅有少數人針對超音波在活化、助長等建設性生物效應上的可能應用進行探討。
本研究為了探討建設性超音波生物效應,以Rayleigh-Plesset的空孔振動理論模擬豐年蝦休眠試體在孵化時期的結構特性,計算其共振頻率,以為超音波的基本照射頻率。本論文著眼於在豐年蝦卵孵化過程,以位於共振頻率與非共振頻率的超音波,分別建立均勻照射聲場來照射卵細胞試體。而在試體生物效應的觀察上,則以直接計算與觀察的方式為主。在超音波照射實驗中紀錄試體的各項生物特性,並配合顯微鏡觀察以透析超音波所造成的各種效應,並進行實驗組(有超音波照射)與控制組(無超音波照射)的比較。
根據豐年蝦卵殼外型及內部胚胎薄膜與水之間的作用,分別求得共振頻率理論值範圍為0.222~0.226 MHz與2.46~4.71 MHz。經不同設定下的超音波照射實驗後,得到豐年蝦卵孵化率在共振頻率中有最大提昇16%與孵化時間集中提前的活化及助長效應。此研究的成果可提昇建設性超音波生物技術,以為爾後相關生物研究之基礎。
This proposal is about a project to study the biological activities of Artemia caused by ultrasound exposure. Ultrasound is employed clinically, for example, in medical diagnosis as a pulse-echo technique for obtaining information of tissue characteristics. It can also use the high-intensity-ultrasound to destroy the lump and pathogens of human tissues. In the other hand, the ultrasonic experiments of plant or insect tissues that contain gas in intercellular channels irradiate with megahertz frequencies of ultrasound, causing perturbation and destruction in nearby cells. Thus, the ultrasonic biological effect, in general, is destructive. However, ultrasound can be a noninvasive form of mechanical energy propagated in biologic organisms. This fact attracts our attention to identify the biologic mechanisms corresponding to the biological activation of Artemia induced by ultrasound exposure.
To perform the above-mentioned research, the oscillation of the Artemia in response to the ultrasound radiation is simulated using Rayleigh-Plesset’s bubble activation theory. The gas body activation theory is to calculate the resonant frequencies of the Artemia at different stages of its life. The calculated resonant frequency range of the Artemia cyst shape and the embryonic cuticle is about 0.222~0.226 MHz and 2.46~4.71 MHz. By using the above mentioned resonance frequency of the Artemia, the maximum relative growth rate was increasing 16%. It was found that the Artemia of activation and increasing the hatching rate appeared during irradiation.
目錄………………………………………………………………………………I
表目錄……………………………………………………………………………V
圖目錄……………………………………………………………………………VII
中文摘要…………………………………………………………………………XIII
英文摘要…………………………………………………………………………XIV
第一章 前言………………………………………………………………………1
1.1 研究主題……………………………………………………………………1
1.2 研究背景……………………………………………………………………2
1.3 研究目的……………………………………………………………………11
1.4 豐年蝦簡介…………………………………………………………………12
1.4.1 浮游甲殼動物……………………………………………………………12
1.4.2 休眠卵-豐年蝦…………………………………………………………13
1.5 章節說明……………………………………………………………………15
第二章 基本理論………………………………………………………………20
2.1 波動方程式…………………………………………………………………20
2.1.1 平面聲場的波動方程式…………………………………………………23
2.1.2 介質的粒子速度與粒子加速度…………………………………………25
2.1.3 超音波的強度與能量……………………………………………………25
2.2 超音波的空孔原理…………………………………………………………27
2.2.1 穩態空孔…………………………………………………………………27
2.2.2 暫態空孔…………………………………………………………………28
2.2.3 氣泡的收縮與溫度上升…………………………………………………29
2.2.4 氣泡的收縮與壓力上升…………………………………………………29
2.3 空孔氣泡動力學……………………………………………………………31
2.3.1 空孔氣泡運動方程式……………………………………………………31
2.4 Rayleigh-Plesset方程式…………………………………………………35
2.4.1 無阻尼的線性震盪………………………………………………………35
2.4.2 共振頻率…………………………………………………………………36
2.5 穩態阻尼振盪的共振頻率…………………………………………………38
第三章 實驗方法與步驟………………………………………………………43
3.1 實驗目的……………………………………………………………………43
3.2 實驗方法……………………………………………………………………44
3.2.1 照射聲場…………………………………………………………………44
3.2.1.1 超音波探頭聲場的設定………………………………………………44
3.2.1.2 照射容器的設計………………………………………………………46
3.2.2 實驗儀器…………………………………………………………………48
3.2.3 實驗照射共振頻率的選取………………………………………………51
3.2.3.1 MiLab分析量測軟體…………………………………………………51
3.2.3.2 理論值計算……………………………………………………………53
3.3 實驗步驟……………………………………………………………………57
3.3.1 豐年蝦卵的選用與先期培養……………………………………………57
3.3.2 豐年蝦卵超音波照射實驗的方法與流程………………………………59
第四章 實驗結果與討論………………………………………………………93
4.1 超音波照射系統的評估……………………………………………………94
4.1.1 實驗水槽與照射試片內聲場強度分布量測……………………………94
4.1.2 照射系統的強度設定……………………………………………………96
4.2 實驗參數設定………………………………………………………………98
4.2.1 超音波照射系統設定……………………………………………………98
4.2.2 實驗環境設定……………………………………………………………100
4.3 實驗結果統計記錄…………………………………………………………102
4.3.1 表格資料…………………………………………………………………102
4.3.2 圖形資料…………………………………………………………………104
4.4 結果與討論…………………………………………………………………109
4.4.1 孵化率方面的提昇………………………………………………………109
4.4.1.1 頻率對孵化率的影響…………………………………………………109
4.4.1.2 照射強度對孵化率的影響……………………………………………110
4.4.1.3 照射時間對孵化率的影響……………………………………………111
4.4.2 孵化時間的提前…………………………………………………………111
4.4.3 綜合討論…………………………………………………………………113
4.4.3.1 豐年蝦卵與實驗設定的關係…………………………………………113
4.4.3.2 實驗參數間的相互關聯性……………………………………………114
第五章 結論與建議……………………………………………………………156
5.1 結論…………………………………………………………………………156
5.2 建議事項與未來展望………………………………………………………158
參考文獻…………………………………………………………………………160
1.鄭重,李少菁,許振祖,海洋浮游生物學,水產出版社,pp. 1-13,民國85年12月修訂再版一刷。
2.W.T. Coakley and D. Hampton, “Quantitative Relationships between Ultrasonic Cavitation and Effects upon Amoebae at 1 MHz”, J. Acoust. Soc. Am., 50(6), pp. 1546-1553, 1971.
3.W.T. Coakley and F. Dunn, “Degradation of DNA in High-Intensity Focused Ultrasonic Fields at 1 MHz”, J. Acoust. Soc. Am., 50(6), pp. 1539-1545, 1971.
4.G.E. Kaufman and M.W. Miller, “Growth Retardation in Chinese Hamster V-79 Cells Exposed to 1 MHz Ultrasound”, Ultrasound in Med. & Biol., 4(2), pp. 139-144, 1978.
5.D.L. Miller, “Cell Death Thresholds in Elodea for 0.45-10MHz Ultrasound Compared to Gas-Body Resonance Theory”, Ultrasound in Med. & Biol., 5(4), pp. 351-357, 1979.
6.E. Graham, M. Hedges, S. Leeman and P. Vaughan, “Cavitational Bio-effects at 1.5 MHz”, Ultrasonics, 18(5), pp. 224-228, 1980.
7.A.H.M. Al-Hashimi and I.V. Chapman, “Modification of Ultrasound Induced Changes in Mammalian Cells by Increased Viscosity of Medium and Increased Ambient Pressure”, Int. J. Radiat. Biol., 38(1), pp.11-19, 1980.
8.C.F. Hayes, H.T.G. Chingon, M.B. Ikeda, S.L. Sanderson, and J. Deaver, “Ultrasonic effects Dacus Dorsalis”, Ultrasound Med. Biol., 9(2), pp. 185-189, 1983.
9.S.Z. Child, C.H. Raeman, E. Walters, and E.L. Carstensen, “The Sensitivity of Drosophila Larvae to Continuous-Wave Ultrasound”, Ultrasound Med. Biol., 18(8), pp. 725-728, 1992.
10.M. Fahnestock, V.G. Rimer, R.M. Yamawaki, P. Ross and P.D. Edmonds, “Effects of Ultrasound Exposure In Vitro on Neuroblastoma Cell Membranes”, Ultrasound in Med. & Biol., 15(2), pp. 133-144, 1989.
11.D.L. Miller, S. Bao and J.E. Morris, “Sonoporation of Cultured Cells in the Rotation Tube Exposure System”, Ultrasound in Med. & Biol., 25(1), pp. 143-149, 1999.
12.A.A. Brayman and M.W. Miller, “Bubble Cycling and Standing Waves in Ultrasonic Cell Lysis ”, Ultrasound in Med. & Biol., 18(4), pp. 411-420, 1992.
13.A.A. Brayman and M.W. Miller, “Cell Density Dependence of the Ultrasonic Degassing of Fixed Erythrocyte Suspensions”, Ultrasound in Med. & Biol., 19(3), pp. 243-252, 1993.
14.M.M. Horder, S.B. Barnett, G.J. Vella and M.J. Edwards, “Ultrasound-Induced Temperature Increase in Guinea-Pig Fetal Brain In Vitro”, Ultrasound in Med. & Biol., 24(5), pp. 697-704, 1998.
15.M.M. Horder, S.B. Barnett, G.J. Vella, M.J. Edwards and A.K.W. Wood, “Ultrasound-Induced Temperature Increase in Guinea-Pig Fetal Brain In Utero: Third-Trimester Gestation”, Ultrasound in Med. & Biol., 24(9), pp. 1501-1510, 1998.
16.S.L. Poliachik, W.L. Chandler, P.D. Mourad, M.R. Bailey, S. Bloch, R.O. Cleveland, P. Kaczkowski, G. Keilman, T. Porter and L.A. Crum, “Effect of High-Intensity Focused Ultrasound on Whole Blood with and without Microbubble Contrast Agent”, Ultrasound in Med. & Biol., 25(6), pp. 991-998, 1999.
17.H. Böhm, P. Anthony, M.R. Davey, L.G. Briarty, J.B. Power, K.C. Lowe, E. Benes and M. Gröschl, “Viability of Plant Cell Suspensions Exposed to Homogeneous Ultrasonic Fields of Different Energy Density and Wave Type”, Ultrasonics, 38(1-8), pp. 629-632, 2000.
18.S. Radel, A.J. McLoughlin, L. Gherardini, O. Doblhoff-Dier and E. Benes, “Viability of Yeast Cells in Well Controlled Propagating and Standing Ultrasonic Plane Waves”, Ultrasonics, 38(1-8), pp. 633-637, 2000.
19.L. Lin, J. Wu, K.P. Ho and S. Qi, “Ultrasound-Induced Physiological Effects and Secondary Metabolite (Saponin) Production in Panax Ginseng Cell Cultures”, Ultrasound in Med. & Biol., 27(8), pp. 1147-1152, 2001.
20.E.A. Neppiras, “Acoustic Cavitation”, Physics Reports-Review Section of Physics Letters, 61(3), pp. 159-251, 1980.
21.O. Doblhoff-Dier, T. Gaida, H. Katinger, and others, “A Novel Ultrasonic Resonance Field Device for the Retention of Animal Cells”, Biotechnol. Prog, 10(4), pp. 428-432, 1994.
22.M. Dyson, “Non-thermal Cellular Effects of Ultrasound”, Br. J. Cancer Suppl., 45(5), pp. 165-171, 1982.
23.J.W. Ellwart, H. Brettel and L.O. Kober, “Cell Membrane Damage by Ultrasound at Different Cell Concentrations”, Ultrasound in Med. & Biol., 14(1), pp. 43-50, 1979.
24.Y.P. Yip, C. Capriotti, S.G. Norbash, M.S. Rosenthal and J.W. Yip, “Ultrasound Effects on cell Proliferation and Migration of Chick Motoneurons”, Ultrasound in Med. & Biol., 17(1), pp. 55-63, 1991.
25.G. Cum, G. Galli, R. Gallo and A. Spadaro, “Role of Frequency in the Ultrasonic Activation of Chemical Reaction”, Ultrasonics, 30(4), pp. 267-270, 1992.
26.T. Feigl, B. Völklein, H. Iro, C. Ell and T. Schneider, “Biophysical Effects of High-Energy Pulsed Ultrasound on Human Cells”, Ultrasound in Med. & Biol., 22(9), pp. 1267-1275, 1996.
27.S.B. Barnett, H.D. Rott, G.R.T. Haar, M.C. Ziskin and K. Maeda, “The Sensitivity of Biological Tissue to Ultrasound”, Ultrasound in Med. & Biol., 23(6), pp. 805-812, 1997.
28.J. Parvizi, C.C. Wu, D.G. Lewallen, J.F. Greenleaf and M.E. Bolander, “Low-Intensity Ultrasound Stimulates Proteoglycan Synthesis in Rat Chondrocytes by Increasing Aggrecan Gene Expression”, J. Orthop. Res., 17(4), pp. 488-494, 1999.
29.K. Naruse, Y. Mikuni-Takagaki, Y. Azuma, M. Ito, T. Oota, K. Kameyama and M. Itoman, “Anabolic Response of Mouse Bone-Marrow-Derived Stromal Cell Clone ST2 Cells to Low-Intensity Pulsed Ultrasound”, Biochem. Biophys. Res. Commun., 268(1), pp. 216-220, 2000.
30.S. Takikawa, N. Matsui, T. Kokubu, M. Tsunoda, H. Fujika, K. Mizuno and Y. Azuma, “Low-Intensity Pulsed Ultrasound Initiates Bone Healing in Rat Nonunion Fracture Model”, J. Ultrasound Med., 20(3), pp. 197-205, 2001.
31.J. Harle, V. Salih, F. Mayia, J.C. Knowles and I. Olsen, “Effects of Ultrasound on the Growth and Function of Bone and Periodontal Ligament Cells In Vitro”, Ultrasound in Med. & Biol., 27(4), pp. 579-586, 2001.
32.楊旭光,張國賢,水下反沾附技術,海下技術季刊,第五卷第二期,pp. 47-50,民國84年6月。
33.S.K. Yang and Y.C. Huang, “The Activation of Growth in Plant Roots by Ultrasound Exposure”, Biomedical Engineering: Applications, Basis and Communications, 12(3), pp. 53-58, 2000.
34.S.K. Yang and Y.C. Huang, “Erythrocytes Damage by Ultrasound at Different Hydrostatic Pressures”, Biomedical Engineering: Applications, Basis and Communications, 13(1), pp. 8-13, 2001.
35.S.K. Yang and Y.C. Huang, “Biological Effects of Paramecium in Diffused Ultrasonic Fields”, Ultrasonics, 39, pp.525-531, 2002.
36.劉金源,水中聲學-原理與運用,國立中山大學出版社,pp. 109-113,民國88年3月。
37.鄭振東編譯,超音波工程,全華科技圖書股份有限公司,pp. 9-10,民國88年6月。
38.L.E. Kinsler, A.R. Frey, A.B. Coppens and J.V. Sanders, Fundamentals of Acoustics, New York: Wiley, pp. 104-112, 127-131, 1982.
39.賴耿陽編著,超音波工學理論實務,復漢出版社,pp. 9-18,中華民國81年8月。
40.M.S. Plesset, Pasadena and Calif, “The Dynamics of Cavitation Bubble”, J. App. Mech., 16, pp. 277-282, 1949.
41.陳明凱,超音波照射下之草履蟲生物效應機制研究,國立中山大學機械工程研究所碩士論文,中華民國90年6月。
42.H.G. Flynn, “Cavitation Dynamics. I. A Mathematical Formulation*”, J. Acoust. Soc. Am., 57(6), pp. 1379-1396, 1975.
43.W. Lauterborn, “Numerical Investigation of Nonlinear Oscillations of Gas Bubbles in Liquids*”, J. Acoust. Soc. Am., 59(2), pp. 283-293, 1976.
44.P. Sorgeloos, P. Lavens, P. Léger, W. Tackaert and D. Versicheie, Manual for the Culture and Use of Brine Shrimp Artemia in Aquaculture, Prepared for the Beligian Administration for Development Cooperation and the Food and Agriculture Organization of United Nations by State University of Ghent, Beligium – Faculty of Agriculture, pp. 34-36, 1986.
45.W.L. Nyborg and M.C. Ziskin, Biological Effects of Ultrasound, Churchill Livingstone, pp. 9-11, 36-38, 1985.
46.鄭錦文,水中吸音材料於不同水深之特性探討,國立中山大學海下技術研究所碩士論文,中華民國89年7月。
47.C.H. Brown, Structural Materials in Animals, Pitman, pp. 11-12, 1975.
48.國立海洋生物博物館網頁:http://www.nmmba.gov.tw/english/pro/allview/14.html.
49.E.O. Brigham, The Fast Fourier Transform and Its Applications, Ed. New Jersey: Prentice-Hall, pp. 9-49, 1988.
50.張麗景,曹麗英,實用生物統計學,華騰文化股份有限公司,pp. 2-6,67-68,中華民國88年2月。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔