(100.26.179.251) 您好!臺灣時間:2021/04/21 22:08
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:林佳駿
研究生(外文):Chia-Chun Lin
論文名稱:直接甲醇燃料電池研究─甲醇濃度、溫度及二氧化碳對性能的影響
論文名稱(外文):Study on the performance of a Direct Methanol Fuel Cell ─ The influence of methanol concentration, temperature and carbon dioxide
指導教授:李明三李明三引用關係
指導教授(外文):Ming-San Lee
學位類別:碩士
校院名稱:國立中山大學
系所名稱:機械與機電工程學系研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2003
畢業學年度:91
語文別:中文
論文頁數:86
中文關鍵詞:甲醇濃度二氧化碳直接甲醇燃料電池
外文關鍵詞:methanol concentrationDMFCcarbon dioxide
相關次數:
  • 被引用被引用:3
  • 點閱點閱:196
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
此研究針對直接甲醇燃料電池之單電池進行實驗測試與分析。實驗針對不同控制參數─甲醇濃度、甲醇溫度以及生成物二氧化碳等對直接甲醇燃料電池的性能的影響,其中包含這些控制參數對電池之暫態和穩態的影響分析,經由上述一系列參數之實驗與分析,其結果將有助於掌握影響直接甲醇燃料電池性能的重要因素。
實驗使用Nafion®交換膜作為交換膜電極組材料,流道電極板上之流道面積與總面積的比使用42%,由本文的實驗結果,電池性能不論在暫態或穩態時會隨著甲醇濃度的提高而增加,2M甲醇濃度可得到最佳性能,暫態及穩態的性能也隨者溫度的昇高而增加,反應生成物二氧化碳在高電流時對直接甲醇燃料電池才會產生較大的影響,另外,根據實驗結果,二氧化碳生成後,只有少部分會以氣態的狀態呈現。
The performance of a Direct Methanol Fuel Cell has been experiment and analysis in this research. The performance of Direct Methanol Fuel Cell were tested by changing different parameter, such as methanol concentration, temperature, and the effect of carbon dioxide. This influence include transient and steady-state respond. Through the experiment and analysis, we hope we could understand the important factors which influence the performance of the DMFC.
This experiment use Nafion® as membrane electrode assembly, and the ratio of flow channel area to total electrode area is 58%. The performance of the single cell was enhanced by increasing methanol concentration as the experiment result, no matter transient or steady-state respond. The best performance was obtained from 2M. The performance at transient or steady-state was also improved by increasing methanol/cell temperature. The product of the reaction, carbon dioxide, will cause more influence when cell work at higher current. In addition, there are few carbon dioxide which will appear as gaseous state.
目錄………………………………………………………………………....................Ⅰ
圖目錄……………………………………………………………………....................Ⅳ
表目錄……………………………………………………………………....................Ⅵ
論文摘要(中文)…………………………………………………………....................Ⅶ
論文摘要(英文)…………………………………………………………....................Ⅷ
第一章 緒論....................................................................1
1.1前言........................................................................1
1.2 燃料電池簡介...............................................................3
1.3 燃料電池的分類.............................................................5
1.4 文獻回顧...................................................................7
第二章 直接甲醇燃料電池(DMFC).................................................15
2.1直接甲醇燃料電池...........................................................15
2.2直接甲醇燃料電池工作原理...................................................17
2.3直接甲醇燃料電池結構.......................................................18
2.3.1質子交換膜...............................................................19
2.3.2陽極電極(甲醇側).......................................................20
2.3.3陰極電極(氧氣側).......................................................22
2.3.4催化劑...................................................................23
2.3.5雙極流場板...............................................................25
2.4交換膜電極組(MEA)的製作....................................................25
2.4.1質子交換膜的處理.........................................................26
2.4.2電極製作.................................................................27
2.4.3交換膜電極組的製作.......................................................28
2.5 影響直接甲醇燃料電池(DMFC)性能之因素......................................28
2.5.1甲醇濃度.................................................................29
2.5.2溫度.....................................................................29
2.5.3壓力.....................................................................30
2.5.4交換膜厚度...............................................................31
2.5.5流道.....................................................................31
2.5.6二氧化碳的影響...........................................................32
2.5.7陽極背壓的影響...........................................................33
第三章 實驗設備...............................................................34
3.1 實驗之目標................................................................34
3.2 實驗設備..................................................................35
3.2.1實驗材料與規格...........................................................35
3.2.2反應室設計...............................................................36
3.2.3量測設備與規格...........................................................38
3.3實驗操作...................................................................40
3.3.1單電池組裝...............................................................41
3.3.2組件防漏測試.............................................................42
3.3.3電池量測.................................................................43
第四章 實驗結果與分析.........................................................46
4.1 接觸電阻〈螺栓扭矩〉的影響................................................46
4.2 濃度的影響................................................................47
4.3 濃度隨時間變化的影響......................................................48
4.4 溫度的影響................................................................50
4.5溫度隨時間變化的影響.......................................................51
4.6 二氧化碳隨時間生成的影響..................................................52
第五章 結論...................................................................55
5.1 結論......................................................................55
5.2 未來可進行的工作..........................................................57
參考文獻......................................................................58
圖1.1 燃料電池反應機制示意圖.................................................60
圖1.2 IFF與SFF結構圖.........................................................61
圖1.3 點狀式流道結構圖.......................................................61
圖2.1 DMFC單電池示意圖.......................................................62
圖3.1 單電池組合示意圖.......................................................63
圖3.2 陽極側極板,傳統型流道,流道面積比為42%................................64
圖3.3 陽極側燃料儲存槽.......................................................64
圖3.4 陰極側極板,傳統型流道,流道面積比為42%................................65
圖3.5 陰極側燃料儲存槽.......................................................65
圖4.1 不同扭力對電流的影響(T=30℃, CH3OH 2.0M, air)..........................66
圖 4.2 不同甲醇濃度對電池性能影響(T=30℃, air, 扭力70Kg-cm)...................67
圖4.3 最佳穩定電流之濃度(1歐姆負載, T=30℃, air, 扭力70Kg-cm)................68
圖4.4 最佳穩定電流濃度(10歐姆負載, T=30℃, air, 扭力70Kg-cm).................69
圖4.5 最佳穩定電流之濃度(0.1歐姆負載, T=30℃, air, 扭力70Kg-cm)..............70
圖 4.6 不同甲醇溫度濃度對電池性能影響(CH3OH 2M, air)..........................71
圖 4.7 不同外界溫度濃度對電池性能影響(CH3OH 2M, air)..........................72
圖4.8 最佳穩定電流之溫度(CH3OH 0.5M, 1歐姆負載, air, 扭力70Kg-cm)............73
圖4.9 最佳穩定電流之溫度(CH3OH 2M, 1歐姆負載, air, 扭力70Kg-cm)..............73
圖4.10 單電池不同放置角度示意圖(a)(b)(c).....................................74
圖4.11 二氧化碳生成的影響(CH3OH 2M, 10歐姆負載, air, 扭力70Kg-cm)............75
圖4.12 二氧化碳生成的影響(CH3OH 2M, 1歐姆負載, air, 扭力70Kg-cm).............76
圖4.13 二氧化碳生成的影響(CH3OH 2M, 0.1歐姆負載, air, 扭力70Kg-cm)...........77
圖4.14 理論與量測之二氧化碳比較(CH3OH 2M, 0.1歐姆負載, air, 扭力70Kg-cm).....78
圖4.15 理論與量測之二氧化碳比較(CH3OH 2M, 1歐姆負載, air, 扭力70Kg-cm).......79
圖4.16 理論與量測之二氧化碳比較(CH3OH 2M, 3.9歐姆負載, air, 扭力70Kg-cm).....80
圖4.17 理論與量測之二氧化碳比較(CH3OH 2M, 10歐姆負載, air, 扭力70Kg-cm)......81
圖5.1 甲醇濃度梯度的影響(1歐姆負載, air, 扭力70Kg-cm)........................82
表1.1 各種燃料電池基本特性比較...............................................84
表2.1 DMFC性能影響因素.......................................................85
表4.1 平均濃度變化表.........................................................86
[1] A. Heinzel, V. M. Barragán, Journal of Power Sources, 84, pp70-74, 1999
[2] D. H. Jung, C. H. Lee, C. S. Kim, D. R. Shin, Journal of Power Sources, 71, pp169, 1998
[3] M. K. Ravikumar, A. K. Shukla, Journal of Electrochem. Soc., 143, pp2601, 1996
[4] K. Scott, W. Taama, J. Cruickshank, Journal of Power Sources, 65, pp159, 1997
[5] J. Chuickshank, K. Scott, Journal of Power Sources, 70, pp40, 1998
[6] S. R. Narayanen, A. Kindler, B. Jeffries-Nakamura, W. Chun, H. Frank, M. Smart, T. I. Valdez, S. Surampudi, G. Halpert, Annu. Battery Conf. Appl. Adv., 11, pp113, 1996
[7] M. P. Hogarth, G. A. Hards, Platinum Met. Rev., 40, pp150, 1996
[8] A. Küver, W. Vielstich, Journal of Power Sources, 74, pp211, 1998
[9] M. Kunimatsu, T. Shudo, Y. Nakajima, JSAE Review, 23, pp21-26, 2002
[10] A. S. Aricò, P. Crety, V. Baglio, E. Modica, V. Antonucci, Journal of Power Sources, 91, pp202-209, 2000
[11] T. V. Nguyen, Journal of Electrochemical Society, Vol.143, No.5, L103-L105, 1996
[12] K. Scott, W. M. Taama, P. Argyropoulos, Journal of Apply Electrochemistry, Vol.28, pp1389, 1998
[13] P. Argyropoulos, K. Scott, W. M. Taama, Electrochimica Acta, 44, pp3575-3584, 1999
[14] A. S. Arico, P. Creti, P. L. Antonucci, J. Cho, H. Kim, V. Antonucci, Electrochimica Acta, 43, pp3719-3729, 1998
[15] Zhaobin Wei, Suli Wang, Baolian Yi, Jianguo Liu, Likang Chen, WeiJiang Zhou, Wenzheng Li, Qin Xin, Journal of Power Sources, 106, pp364-369, 2002
[16] 呂俊育, 國立中山大學機械與機電工程研究所, 碩士論文, 中華民國八十九年六月
[17] 萬其超, 電化學, 商務印書局, 1992
[18] 劉子豪, 大葉大學機械工程研究所, 碩士論文, 中華民國九十年六月
[19] Jeremy P. Meyers, John Newman, Journal of The Electrochemical Society, 149, ppA729, 2002
[20] 廖明祥, 國立中山大學機械與機電工程研究所, 碩士論文, 中華民國九十一年六月
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔