(3.227.235.183) 您好!臺灣時間:2021/04/20 09:51
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:胡書華
研究生(外文):Shu-Hua Hu
論文名稱:蚊子幼蟲在超音波照射下之生物效應
論文名稱(外文):The biological Effect of Mosquito Larvae by Ultrasound Exposure
指導教授:楊旭光楊旭光引用關係
指導教授(外文):Shiuh-Kuang Yang
學位類別:碩士
校院名稱:國立中山大學
系所名稱:機械與機電工程學系研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2003
畢業學年度:91
語文別:中文
論文頁數:137
中文關鍵詞:超音波蚊子幼蟲生物效應
外文關鍵詞:biological effectultrasoundmosquito larvae
相關次數:
  • 被引用被引用:2
  • 點閱點閱:249
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
摘要
本研究的目的在於研究白線斑蚊(Aedes albopictus)的幼蟲在超音波聲場照射下,成長過程中所出現的生理型態,以呈現出超音波生物效應的多樣性。自從超音波發展以來,至今超音波技術已經廣泛的應用在醫學與生物工程領域上,其中大多是利用高強度的照射聲場來照射細胞或生體組織,以達到細胞破壞或病變組織的消除。為了瞭解超音波生物效應對生體組織的結構狀態或生命發展過程中所造成的影響,本研究針對過去超音波生物效應所探討的方向,以多細胞生物-蚊子幼蟲為超音波照射的對象,希望能為超音波生物效應尋求另一個應用的方向。
本研究針對蚊子幼蟲的呼吸氣管,考慮其結構的特性,以Miller的圓柱形空孔振動理論為基礎,計算氣管的共振頻率,以為超音波的基本照射頻率。本論文分別建立位於共振頻率與非共振頻率的超音波照射聲場,在不同強度下,對幼蟲試體進行照射,同時設置無超音波照射的控制組,以進行結果的討論與比較。
經由計算,求得氣管的共振頻率理論值範圍在0.6∼1.5 MHz 之間。在經由超音波照射後,觀察到幼蟲的氣管有斷裂的現象;在培養過程中,除了有死亡發生,也發現幼蟲在進入蛹化階段時會出現蛹化畸形而死亡的情形。從結果分析上,得到幼蟲在共振頻率1 MHz的超音波照射下,死亡率、蛹化死亡率與生長延遲的比率都是最高的。此結果有助於在未來對於超音波生物效應的探討,與相關生物技術的研究。
Abstract
The objective of this thesis is to study the biological effects of larvae of Aedes albopictus induced by ultrasound exposure. Ultrasound is widely used in medical and biological techniques, most of them are cell killing or tumor eliminating by high-intensity ultrasound. In order to analyse the influences of ultrasound biological effects in vivo, the larvae of mosquito, in this research, were exposed to continuous-wave ultrasound.
Some preliminary observations were made with 0-day larvae. The oscillation of the trachea in larvae in response to the ultrasound radiation is simulated using Miller’s cylindrical-bubble activation theory. Dimensions of tubes in the respiratory system of larvae were measured by microscope. The resonant frequency of the tracheae were calculated, and its range is about 0.6∼1.5 MHz.
It was observed that the tracheae in 0-day larvae were ruptured by ultrasound exposure, and the larvae were dead in the duration of growth, some fourth instar larvae failed to mature into pupae. The maximum mosquito larvae mortality was with 1 MHz irradiation, and it’s in good agreement with the resonant frequency calculated in this paper.
目錄
中文摘要………………………………………………………………………...I
英文摘要………………………………………………………………………..II
目錄……………………………………………………………………………III
表目錄…………………………………………………………………………VI
圖目錄………………………………………………………………………..VIII
第一章 前言……………………………………………………………………1
1.1 研究主題………………………………………………………………….1
1.2 研究背景………………………………………………………………….2
1.3 研究目的……………………………………………………………….…9
1.4 蚊子簡介………………………………………………………………...10
1.4.1 昆蟲概述…………………………………………………………10
1.4.2 昆蟲的特性………………………………………………………10
1.4.3 蚊子……………………………………………………………12
1.5 章節說明………………………………………………………………...14
第二章 基本理論……………………………………………….…………18
2.1 波動方程式…………………………………………………………...18
2.1.1平面聲場波動方程式………………………….……………...21
2.1.2介質的粒子速度與粒子加速度………………………….….23
2.1.3超音波的強度與能量……………………………………………23
2.2 圓柱形氣泡的振動模式………………………………………………25
第三章 實驗方法與步驟……………………………………………………32
3.1 實驗目的………………………………………………………………...32
3.2 實驗方法………………………………………………………………...33
3.2.1 照射聲場…………………………………………………………33
3.2.2 實驗儀器…………………………………………………………36
3.2.3 蚊子氣管的量測…………………………………………………40
3.3 實驗步驟………………………………………………………………42
第四章 實驗結果與討論……………………………………………………64
4.1 超音波照射系統的評估………………………………………………...64
4.1.1照射試片內聲場強度分布量測…………………………………..64
4.1.2照射系統的強度設定……………………………………………..65
4.2 實驗參數設定…………………………………………………………...67
4.2.1 超音波照射系統的參數設定設定………………………………67
4.2.2 實驗環境設定……………………………………………………69
4.3 實驗結果統計記錄……………………………………………………...70
4.3.1 表格與圖形資料…………………………………………………70
4.4 結果與討論……………………………………………………………...76
4.4.1頻率與強度對幼蟲死亡率的關係………………………………..76
4.4.2頻率與強度對蛹化死亡率的關係………………………………..78
4.4.3頻率與強度對生長延遲的關係…………………………………..79
第五章 結論與建議………………………………………………………129
5.1 結論…………………………………………………………………….129
5.2 建議…………………………………………………………………….131
參考文獻……………………………………………………………………133
六、 參考文獻
1.P.R. Clarke and C. Hill, “Physical and Chemical Aspects of Ultrasonic Disruption of Cells”, J. Acoust. Soc. Am., 49, pp.649-653, 1970.
2.W.T. Coakley and D. Hampton, “Quantitative Relationships between Ultrasonic Cavitation and Effects upon Amoebae at 1 MHz”, J. Acoust. Soc. Am., 50(6), pp. 1546-1553, 1971.
3.W.T. Coakley and F. Dunn, “Degradation of DNA in High-Intensity Focused Ultrasonic Fields at 1 MHz”, J. Acoust. Soc. Am., 50(6), pp. 1539-1545, 1971.
4.M.W. Miller, S.M. Voorhees, E.L. Carstensen, and G.E. Kaufman, “The Effects of 2 MHz Ultrasound Irradiation of Pisum sativum Roots”, Radiat. Res. 65, pp. 451-457, 1976a.
5.M.W. Miller, V. Ciaravino, D. Allen, and S. Jensen, “Effect of 2 MHz Ultrasound on DNA, RNA and Protein Synthesis in Pisum sativum Meristem Cells”, Int. J. Radiat. Bot. 30, pp. 217-222, 1976b.
6.W.T. Coakley and W.L. Nyborg, “Cavitation;Dynamics of Gas Bubbles;Applications”, in Ultrasound: Its Applications in Medicine and Biology, edited by F.J. Fry, Vol. 3 of Methods and Phenomena: Their Applications in Science and Technology, New York: Elsevier, pp. 77-153, 1978.
7.E.L. Cartensen, S.Z. Child, W.K. Law, D.R. Horwitz, and M.W. Miller, “Caviation as A Mechanism for The Biological Effects of Ultrasound on Plant Roots”, J. Acoust. Soc. Am., 66(5), pp. 1285-1291, 1979.
8.D.L. Miller, “Cell Death Thresholds in Elodea for 0.45-10MHz Ultrasound Compared to Gas-Body Resonance Theory”, Ultrasound in Med. & Biol., 5(4), pp. 351-357, 1979.
9.D.A. Dooley, S.Z. Child, E.L. Cartensen, M.W. Miller, “The Effects of Continuous Wave and Pulsed Ultrasound on Rat Thymocytes In Vitro”, Ultrasound in Med. & Biol., 9, pp. 379-384, 1983.
10.E.L. Carstensen and H.G. Flynn, “The Potential for Transient Cavitation in Pulsed Ultrasound”, Ultrasound in Med. & Biol., 8, pp. L720-L724, 1982.
11.S.Z. Child and E.L. Cartensen, “Effects of Ultrasound on Drosophila: IV. Pulsed Exposures of Eggs”, Ultrasound in Med. & Biol., 8, pp. 311-312, 1982.
12.E.L. Carstensen, S.Z. Child, S. Lam, D.L. Miller and W.L. Nyborg, “Ultrasonic Gas-Body Activation in Drosophila”, Ultrasound in Med. & Biol., 9(5), pp. 473-477, 1983.
13.C.F. Hayes, H.T.G. Chingon, M.B. Ikeda, S.L. Sanderson, and J. Deaver, “Ultrasonic effects Dacus Dorsalis”, Ultrasound in Med. & Biol., 9(2), pp. 185-189, 1983.
14.E.J. Ayme and E.L. Carstensen, “Cavitation Induced by Asymmetric, Distorted Pulsed of Ultrasound: A Biological Test”, Ultrasound in Med. & Biol., 15(1), pp. 61-66.
15.S.Z. Child, C.H. Raeman, E. Walters, and E.L. Carstensen, “The Sensitivity of Drosophila Larvae to Continuous-Wave Ultrasound”, Ultrasound in Med. & Biol., 18(8), pp. 725-728, 1992.
16.E.J. Fry, G. Kossoff, R.C. Eggleton and F. Dunn, “Threshold Ultrasonic Dosages for Structural Changes in The Mammalian Brain”, J. Acoust. Soc. Am., 48(6), pp. 1413-1417, 1970.
17.M. Delius, G. Enders, G. Heine, J. Stark, K. Remberger, W. Brendel, “Biological Effects of Shock Waves: Lung Hemorrhage by Shock Waves in Dogs-Pressure Dependence”, Ultrasound in Med. & Biol., 13(2), pp. 61-67, 1987.
18.M. Delius, G. Enders, Z. Xuan, H.G. Liebich and W. Brendel, “Biological Effects of Shock Waves: Kidney Damage by Shock Waves in Dogs-Dose Dependence”, Ultrasound in Med. & Biol., 14(2), pp. 117-122, 1988.
19.M. Delius, M. Jordan, H. Eizenhoefer, E. Marlinghaus, G. Heine, H.G. Liebich and W. Brendel, “Biological Effects of Shock Waves: Kideny Haemorrhage by Shock Waves in Dogs-Administration Rate Dependence”, Ultrasound in Med. & Biol., 14(8), pp. 689-694, 1988.
20.S.Z. Child, C.L. Hartman, L.A. Schery and E.L. Carstensen, “Lung Damage from Exposure to Pulsed Ultrasound”, Ultrasound in Med. & Biol., 16(8), pp. 817-825, 1990.
21.E.L. Carstensen, C. Hartman, S.Z. Child, C.A. Cox, R. Mayer and E. Schenk, “Test for Kidney Hemorrhage Following Exposure to Instense, Pulsed Ultrasound”, Ultrasound in Med. & Biol., 16(7), pp. 681-685, 1990.
22.C. Hartman, S.Z. Child, R. Mayer, E. Schenk and E.L. Carstensen, “Lung Damage from Exposure to The Fields of An Electrohydraulic Lithotripter”, Ultrasound in Med. & Biol., 16(7), pp. 675-679, 1990.
23.C. Hartman, C.A. Cox, L. Brewer, S.Z. Child, C.F. Cox and E.L. Carstensen, “Effects of Lithotripter Fields on Development of Chick Embryos”, Ultrasound in Med. & Biol., 16(6), pp. 581-585, 1990.
24.D.L. Miller, R.M. Thomas, “Heating as A Mechanism for Ultrasonically-Induced Petchial Hemorrhages in Mouse Intestine”, Ultrasound in Med. & Biol., 20(5), pp. 493-503, 1994.
25.D. Dalecki, C.H. Raeman, S.Z. Child and E.L. Carstensen, “Thresholds for Intestinal Hemorrhage in Mice Exposed to A Piezoelectric Lithotripter”, Ultrasound in Med. & Biol., 21(9), pp. 1239-1246, 1995.
26.D. Dalecki, C.H. Raeman, S.Z. Child and E.L. Carstensen, “Intestinal Hemorrhage from Exposure to Pulsed Ultrasound”, Ultrasound in Med. & Biol., 21(8), pp. 1067-1072, 1995.
27.M.R. Bailey, D. Dalecki, S.Z. Child, C.H. Raeman, D.P. Penney, D.T. Blackstock and Carstensen, “Bioeffects of Positive and Negative Acoustic Pressure in vivo”, J. Acoust. Soc. Am., 100(6), pp. 3941-3946, 1996.
28.S. Vaezy, R. Martin, U. Schmiedl, M. Caps, S. Taylor, K. Beach, S. Carter, P. Kaczkowski, G. Keilman, S. Helton, W. Chandler, P. Mourad, M. Rice, R. Roy and L. Crum, “Liver Hemostasis Using High-Intensity Focused Ultrasound”, Ultrasound in Med. & Biol., 23(9), pp. 1413-1420, 1997.
29.D. Dalecki, C.H. Raeman, S.Z. Child, D.P. Penney and E.L. Carstensen, “Remnants of Albunex® Nucleate Acoustic Cavitation”, Ultrasound in Med. & Biol., 23(9), pp. 1405-1412, 1997.
30.D. Dalecki, C.H. Raeman, S.Z. Child, D.P. Penney, R. Mayer and E.L. Carstensen, “The Influence of Contrast Agents on Hemorrhage Produced by Lithotripter fields”, Ultrasound in Med. & Biol., 23(9), pp. 1435-1439, 1997.
31.D. Dalecki, S.Z. Child, C.H. Raeman, C. Xing, S. Gracewski and E.L. Carstensen, “Bioeffects of Positive and Negative Acoustic Pressures in Mice Infused with Microbubbles”, Ultrasound in Med. & Biol., 26(8), pp. 1327-1332, 2000.
32.V. Suchkova, E.L. Carstensen and C.W. Francis, “Ultrasound Enhancement of Fibrinolysis at Frequencies of 27 to 100 KHz”, Ultrasound in Med. & Biol., 28(3), pp. 377-382, 2002.
33.M.A. Körpinar and D. Erdincler, “The Effect of Pulsed Ultrasound Exposure on The Oxygen Dissociation Curve of Human Erythrocytes in In Vitro Conditions”, Ultrasound in Med. & Biol., 28(11), pp. 1565-1569, 2002.
34.D.L. Miller and J. Song, “Lithotripter Shock Waves with Cavitation Nucleation Agents Produce Tumor Growth Reduction and Gene Transfer In Vivo”, Ultrasound in Med. & Biol., 28(10), pp. 1343-1348, 2002.
35.D.L. Miller, C. Dou and J. Song, “DNA Transfer and Cell Killing in Epidermoid Cells by Diagnostic Ultrasound Activation of Contrast Agent Gas Bodies In Vitro”, Ultrasound in Med. & Biol., 29(4), pp. 601-607, 2003.
36.D.L. Miller and J. Song, “Tumor Growth Reduction and DNA Transfer by Cavitation-Enhanced High-Intensity Focused Ultrasound In Vivo”, Ultrasound in Med. & Biol., 29(6), pp. 887-893, 2003.
37.連日清編著,醫學昆蟲學,南山堂出版社,pp. 57-58,民國74年10月。
38.劉金源,水中聲學-原理與應用,國立中山大學出版社,pp. 109-113,民國88年3月。
39.鄭振東編譯,超音波工程,全華科技圖書股份有限公司,pp. 9-10,民國88年6月。
40.L.E. Kinsler, A.R. Frey, A.B. Coppens and J.V. Sanders, Fundamentals of Acoustics, New York: Wiley, pp. 104-112, 127-131, 1982.
41.賴耿陽編著,超音波工學理論實務,復漢出版社,pp. 9-18,中華民國81年8月。
42.D.L. Miller, “A Cylindrical-Bubble Model for The Response of Plant-Tissue Gas Bodies to Ultrasound”, J. Acoust. Soc. Am., 66, pp. 1313-1321, 1979.
43.C. Devin, “Survey of Thermal, Radiation, and Viscous Damping of Pulsating Air Bubbles in Water”, J. Acoust. Soc. Am., 31, pp. 1654-1667, 1959.
44.詹益豪,超音波誘發豐年蝦卵活化及助長之研究,國立中山大學機械與機電工程研究所碩士論文,中華民國92年7月。
45.鄭錦文,水中吸音材料於不同水深之特性探討,國立中山大學海下技術研究所碩士論文,中華民國89年7月。
46.S.J. Lee, “Development of Eggs, Larvae and Pupae of Aedes albopictus(Skuse)(Diptera:Culicidae)”, Chinese J. Entomol., 14, pp. 13-32, 1994.
47.H.H. Wu and N.T. Chang, “Influence of Temperature, Water Quality and pH Value on Ingestion and Development of Aedes aegypti and Aedes albopictus (Diptera:Culicidae)Larvae”, Chinese J. Entomol., 13, pp. 33-34, 1993.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔