|
Reference of Part 1 [1] De Gruttola, V. and Lagakos, S. (1989):Analysis of doubly-censored survival data, with application to AIDS. Biometrics. Vol. 45, 1-11. [2] Turnbull, B.W. (1974):Nonparametric estimation of a surviorship function with doubly censored data. J. Amer. Statist. Ass. Vol. 69, 169-173. [3] Turnbull, B.W. (1976):The empirical distribution function with arbitrarily grouped, cnesored, and truncated data. J. of the Royal ststistical Society, Series B. Vol. 38, 290-295. [4] Sun, J. (1995):Empirical estimation of a distribution function with truncated and doubly interval-censored data and its application to AIDS studies. Biometrics. Vol. 51, 1096-1104. [5] Sun, J. (1996):A non-parametric test for interval-censored failure time data with application to AIDS studies. Statistics in Medicine. Vol. 15, 1387-1395. [6] Hung-Yen Hsu (1999):The distribution of a non-parametric test for interval failure time data. Master of science. [7] Horng-Huey Luh (1999):The distribution of a non-parametric test for interval-censored and truncated failure time data. Master of science. [8] Yu-Yu Kuo (2000):A generalization of rank tests based on interval- censored failure time data and its application to AIDS studies. Master of science. [9] Ching-Fu Sen. (2001):On the consistency of a simulation procedure and the construction of a non-parametric test for interval-censored data. Master of science. [10]Chinsan, Lee. (1999):An urn model in the simulation of interval censored failure time data. Statistics & Probability Letters. Vol. 45, 131-139.
Reference of Part 2 [11]W. J. Conover (1999):Practical nonparametric statistics. Wiley. [12]Lin, D. Y. and Ying, Z. (1993):A simple nonparametric estimator of the bivariate survival function under univariate censoring. Biometrika. Vol. 80, 573-581. [13]Dabrowska, D. M. (1986):Rank tests for independence for bivariate censored data. Annals of Statistics. Vol. 14, 250-264. [14]Oakes, D. (1982):A concordance test for independence in the presence of censoring. Biometrics. Vol. 38, 451-455. [15]Michael G. Akritas and Clifford C. Clogg (1991):Tests of indepen- dence for bivariate data with random censoring: a contingency-table approach. Biometrics. Vol. 47, 1339-1354. [16]Betensky, R. A. and Finkelstein, D. M. (1999):A non-parametric maximum likelihood estimator for bivariate interval censored data. Statistics in Medicine. Vol. 18, 3089-3100. [17]Betensky, R. A. and Finkelstein, D. M. (1999):An extension of Kendall’s coefficient of concordance to bivariate interval censored data. Statistics in Medicine. Vol. 18, 3101-3109. [18]Shih, J. H. and Louis, T. A. (1996):Tests of independence for bivariate survival data. Biometrics. Vol. 52, 1440-1449. [19]Hsu, L. and Prentice, R. L. (1996):A generalization of the Mantel- Haenszel test to bivariate failure time data. Biometrika. Vol. 83, 905- 911. [20]Kevin J. Hastings (1997):Probability and statistics. Addison-Wesley.
|