跳到主要內容

臺灣博碩士論文加值系統

(44.201.97.0) 您好!臺灣時間:2024/04/19 13:14
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:洪彰懋
研究生(外文):Chang-Mao Hung
論文名稱:以奈米級銅觸媒處理含氮類污染物之氣液相反應機制研究
論文名稱(外文):Study on the Reaction Mechanisms of Gas-liquid Phase of Nitrogen-containing Pollutants over Nanoscale Copper Catalyst
指導教授:樓基中樓基中引用關係
指導教授(外文):Jie-Chung Lou
學位類別:博士
校院名稱:國立中山大學
系所名稱:環境工程研究所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2003
畢業學年度:91
語文別:中文
論文頁數:404
中文關鍵詞:濕式氧化程序選擇性催化Cu-ACF觸媒含氮類污染物奈米級催化劑Cu-La-Ce複合金屬觸媒Cu-Ce複合金屬觸媒Pt-Pd-Rh陶瓷觸媒
外文關鍵詞:ammonia-containing solutionWAO procesammonia
相關次數:
  • 被引用被引用:0
  • 點閱點閱:279
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
含氮類污染物常見於光電半導體、石油煉製、煉焦、肥料和食品等工業之製程廢水及廢氣排放,對於生物具有毒性且對人體具有致癌性及致基因突變性。本研究旨在探討以自製之奈米級催化劑處理含氮類污染物,並進行其氣液相反應機制之研究。由於銅觸媒活性中心的研究,長期以來爭議不斷,至今仍無法明確獲知銅的活性中心到底為何。因此,要闡明奈米級銅觸媒對含氮類污染物的催化活性,就必須瞭解觸媒表面的物理性質與化學組成特性。本研究成果主要內容可歸納為下列四大部份。
在添加奈米級Cu-La-Ce複合金屬觸媒濕式氧化程序催化液相氨方面主要可包括下列幾點:(1)奈米級Cu-La-Ce(7:2:1)複合金屬觸媒對氨(簡稱NH3)轉化率之提昇效果顯著。(2)NH3之轉化率隨反應溫度之提高而增加,但是卻隨進流液空間流速的增加而降低。(3)添加觸媒之濕式氧化反應速率隨水溶液之初始pH值升高而增大,在鹼性條件(pH = 12.0)下水溶液之NH3轉化率可達到95.0%。(4)當提昇壓力至4.0 MPa,則NH3之轉化率可達95.0%以上,顯然提供氧氣可幫助NH3在高溫下之分解效能。(5)由X光粉末繞射分析(簡稱XRD)結果出現的氧化銅(CuO)、三氧化二鑭(La2O3)和二氧化鈰(CeO2)特性波峰。此三種晶相所產生的協合效應是Cu-La-Ce複合金屬觸媒活性極佳的最主要原因之一。由傅立葉轉換紅外線光譜(簡稱FTIR)及擴散反射式紫外-可見光光譜儀(簡稱UV-Vis)分析結果,推測Cu-La-Ce複合金屬觸媒濕式氧化反應機制可能是由CuO所主導,且觸媒可利用對氧的化學吸附來進行氧化反應。(6)由解析型掃描穿透式電子顯微鏡(簡稱AEM)及穿透式電子顯微鏡(簡稱TEM)分析結果,顯示觸媒大多是圓形顆粒聚集狀,且顆粒多集中在奈米尺寸範圍內。由X光成份分析系統(簡稱EDS)及元素X光影像(簡稱Mapping)分析結果證實Cu、La及Ce確實為觸媒的主要組成成份。
在添加奈米級Cu-ACF觸媒濕式氧化程序催化液相氨方面主要可包括下列幾點:(1)銅的載量對Cu-ACF觸媒在處理效率上為一重要的因素,當銅載量在5%時,即足以維持銅在+2價的狀態所致,而+2價的銅乃具有將水溶液中NH3催化成N2之能力。(2)在溫度463 K及濃度400 mg L-1下操作,NH3之最佳轉化率可達99%,顯示Cu-ACF觸媒也具有極佳之活性。(3)添加觸媒對NH3之轉化率隨反應溫度之提高而增加,但是N2之選擇率卻隨反應溫度的增加而降低。(4)添加觸媒對NH3之轉化率隨氧氣分壓之提高而增加。(5)由比表面積分析儀(簡稱BET)、FTIR及元素分析儀(簡稱EA)分析結果證實活性碳纖維(ACF)具有較高的比表面積及表面含氧官能基,因而具有較多的活性位址的特性,可均勻分散金屬,以增加金屬的反應活性。由XRD繞射分析結果出現的CuO和ACF特性波峰顯示CuO晶相與ACF擔體所產生的協合效應為Cu-ACF觸媒活性極佳的最主要原因之一。由FTIR及UV-Vis分析結果,推測Cu-ACF觸媒濕式氧化反應機制可能是由CuO及ACF所共同主導。(6)由金相顯微實驗進一步觀察碳纖維的表面型態,可得知碳纖維的鍛燒溫度與表面含氧官能基是決定氧化銅在碳纖維上沉積是否均勻的重要因素。由AEM及TEM分析結果,顯示觸媒含銅的奈米纖維管微結構為一細長狀的中空管狀碳層結構所構成,且內徑多集中在奈米尺寸範圍內。由EDS及X光螢光分析(簡稱XRF)分析結果證實Cu及P元素為觸媒的主要組成成份。
添加奈米級Cu-Ce複合金屬觸媒氣相氨選擇性催化方面主要可包括下列幾點:(1)在573 K的反應溫度下,Cu-Ce(6:4)複合金屬觸媒對NH3具有極佳之轉化率。(2)NH3之初始濃度愈高,其轉化率愈低,推測可能係因中間產物無法有效被分解而逐漸累積在氣相中所致。(3)由XRD繞射分析結果出現的CuO和CeO2特性波峰。此兩種晶相所產生的協合效應是Cu-Ce複合金屬觸媒活性極佳的最主要原因之一。由BET及EA成分分析結果證實Cu-Ce複合金屬觸媒具有較高的比表面積及表面氧空洞的生成,因而具有較多的活性位址的特性,可增加金屬的反應活性。由FTIR及UV-Vis分析結果,推測Cu-Ce雙功能複合金屬觸媒選擇性催化反應機制可能是由CuO和CeO2所主導。(4)由AEM及TEM分析結果,顯示觸媒大多是圓形顆粒聚集狀,且顆粒多集中在奈米尺寸範圍內。由EDS及Mapping分析結果證實Cu及Ce為觸媒的主要組成成份。
添加奈米級Pt-Pd-Rh陶瓷觸媒氣相氨選擇性催化方面主要可包括下列幾點:(1)Pt-Pd-Rh陶瓷觸媒轉化率在623 K時,NH3之轉化率可達99%。以不同濃度(500~1000 ppm)之NH3進行選擇性催化氧化(SCO)處理程序,結果顯示NH3之初始濃度愈高,其被去除之比率愈低。(2)Pt-Pd-Rh陶瓷觸媒氧化不同濃度NH3(500~1000 ppm)時會產生少量的NO、NO2及大量的N2。(3)由陶瓷擔體觸媒的金相顯微測試結果顯示,NH3之初始濃度愈高,陶瓷擔體的劣化程度就愈高,相對所產生的沉積物量也愈多,且氧化鋁塗覆層因受熱而產生剝落及燒結的現象也相當明顯。(4)由XRD繞射分析結果出現的鉑(Pt)、氧化鈀(PdO)、銠(Rh)及CeO2特性波峰。此四種晶相所產生的複合金屬協合效應是Pt-Pd-Rh陶瓷觸媒活性極佳的最主要原因之一。由FTIR及UV-Vis分析結果,推測Pt-Pd-Rh陶瓷觸媒選擇性氧化反應機制可能是由PdO及CeO2所主導。(5)由EDS、XRF及Mapping分析結果證實Pt、Pd及Rh確實為觸媒的主要組成成份,並均勻分散在含Mg-Al-Si陶瓷擔體的表面上。
Ammonia is one of valuable chemicals, which are commonly used, in various industrial factors. It is also a typical pollutant, and has a long-term impact on human health for its toxicity characteristics. This study investigated the reaction mechanism of gas-liquid phase in oxidation of ammonia in WAO and SCO processes over copper catalysts. As for lack of the research on activated center of copper catalyst for a long time, it was still not exactly unknown what center was going on affecting activity. Therefore, we conducted the physical and chemical properties on surface of catalyst to realize conversion/activity in oxidation of ammonia over nanoscale copper catalyst.
Achievements in oxidation of liquid phase ammonia in WAO process over nanoscale Cu-La-Ce catalysts are as follows: (1) The raising on conversion of ammonia is significantly by adding the molar ratio 7:2:1 of Cu-La-Ce catalyst. (2) The higher temperature the higher conversion, and the increasing space velocity of influent the lower conversion. (3) The reaction rate in WAO process over 7:2:1 catalyst increases with initial pH increasing of solution, 95% conversion of ammonia can be achieved under alkalinity condition. (4) Oxygen supply can promote the decomposition of ammonia at high temperature, above 95% conversion of ammonia can be achieved when total pressure raises at 4.0 MPa. (5) The characteristic peaks of CuO, La2O3 and CeO2 showed from XRD tests indicate the coordination by three peaks probably causes the excellent activity in Cu-La-Ce catalysts; UV-Vis and FTIR analysis results show CuO species dominates the reaction mechanism of liquid phase of WAO process over Cu-La-Ce catalyst which can be used to adsorb the oxygen atom in proceeding the oxidation of ammonia. (6) AEM and TEM analysis results show the outlook of catalyst sites are almost nearly circular and its particle sizes are concentrated in range of nanoscale level; and by EDS and Mapping tests proof elements of Cu, La and Ce are indeed the major components in this catalyst.
Achievements in oxidation of liquid phase ammonia in WAO process over nanoscale Cu-ACF catalysts are as follows: (1) The dose of copper on activated carbon fiber support (denoted by ACF) is important in treatment efficiency of pollutants removal; adding at least 5% of copper dosage which can maintain Cu to be a state of +2, it has the catalytic capacity to convert the ammonia in solution. (2) The optimal conversion obtained in 99% under 463 K and 400 mg/l, shows Cu-ACF is also an alterative catalyst. (3) The higher temperature the higher conversion, and the lower nitrogen is. (4) The higher oxygen pressure the higher conversion. (5) From analysis results of BET, FTIR and EA show ACF support has high BET surface area and oxygen-containing function groups, it causes an increasing activity of metal in reaction for the higher activated sites and metal dispersed uniformly on ACF; XRD tests indicate the coordination by CuO and ACF probably causes the excellent activity over Cu-ACF catalysts; UV-Vis and FTIR analysis results show species CuO and ACF both dominate the reaction mechanism of liquid phase of WAO process over Cu-ACF catalyst. (6) AEM and TEM analysis results show the outlook of catalyst sites are almost Nearly long narrowed tube and its diameters are concentrated in range of nanoscale level; and by EDS and XRF (Mapping) tests proof elements of Cu and P are indeed the major components in this catalyst.
Achievements in oxidation of gas phase ammonia in SCO process over nanoscale Cu-Ce catalysts are as follows: (1) The great conversion over Cu-Ce catalyst (molar ratio 6:4) obtained under 463 K and 400 mg/l. (2) The higher initial concentration of ammonia the lower conversion is probably due to the intermediates out of completely decomposed in catalytic reaction. (3) From analysis results of BET and EA show this catalyst have high BET surface area and empty hole of oxygen-containing on surface, it causes an increasing activity of metal in reaction for the higher activated sites; XRD tests indicate the coordination by CuO and CeO2 probably causes good activity over Cu-Ce catalysts; UV-Vis and FTIR analysis results show species CuO and CeO2 both dominate the reaction mechanism of gas phase of ammonia in SCO process over Cu-CeO2 catalyst. (4) AEM and TEM analysis results show the outlook of catalyst sites are almost nearly circular and its particle sizes are concentrated in range of nanoscale level; and by EDS and Mapping tests proof elements of Cu and Ce are indeed the major components in this catalyst.
Achievements in oxidation of gas phase ammonia in SCO process over nanoscale Pt-Pd-Rh catalyst coated on ceramics are as follows: (1) The 99% conversion over this catalyst can be obtained at 623 K; the higher initial concentration of ammonia ranging from 500 to 1000 mg/l the lower conversion is found. (2) The large amount of N2 and minor amount of NO and NO2 are found in the products after this reaction. (3) XRD tests indicate the coordination by Pt, PdO, Rh and CeO2 probably causes the excellent activity over this catalyst; UV-Vis and FTIR analysis results show species PdO and CeO2 both dominate the reaction mechanism of gas phase of ammonia in SCO process over Pt-Pd-Rh catalyst. (4) AEM and TEM analysis results show the higher initial concentration the higher aged the ceramic support, and the wider sintering of Al2O3 coating layer is. (5) By EDS, XRF and Mapping tests proof elements of Pt, Pd and Rh are indeed the major components dispersed on this ceramic catalyst.
論文授權書
學位論文審定書
中文摘要 I
英文摘要 VI
致謝 XI
總目錄 i
表目錄 .vi
圖目錄 vii
第一章 緒論 1
1-1 研究緣起與目的 1
1-2 研究內容及目的 6
第二章 文獻回顧 9
2-1 含氮類污染物用途及污染來源 9
2-2 含氮類污染物之物理及化學特性 11
2-3 含氮類污染物之廢水處理法 17
2-3-1 濕式氧化法 18
2-3-2 超臨界濕式氧化法 26
2-3-3 觸媒濕式氧化法 29
2-4 選擇性觸媒氧化法 34
2-5 觸媒載體 37
2-5-1 活性碳纖維 38
2-5-2 陶瓷多孔體 44
2-6 奈米材料的觸媒性質 49
第三章 研究方法 52
3-1 實驗設備 52
3-1-1 半批次式觸媒濕式氧化程序處理設備 52
3-1-2 連續式異相觸媒濕式氧化程序處理設備 54
3-1-3 異相觸媒氣相催化程序處理設備 56
3-2 奈米觸媒製備裝置 58
3-3 奈米觸媒製備方法 58
3-4 實驗藥品與儀器 59
3-4-1 實驗水樣 59
3-4-2 實驗氣體及藥品 59
3-4-3 實驗儀器 61
3-5 分析設備及裝置 62
3-5-1 比表面積分析儀 63
3-5-2 粒徑分析儀 63
3-5-3 元素分析儀 63
3-5-4 熱重及熱差分析 64
3-5-5 X光粉末繞射分析 65
3-5-6 X光螢光分析 65
3-5-7 擴散反射式紫外-可見光光譜儀 66
3-5-8 傅立葉轉換紅外線光譜與調減全反射式傅立葉轉
換紅外線光譜分析 66
3-5-9 金相組織觀察 67
3-5-10 掃描式電子顯微鏡 67
3-5-11 穿透式電子顯微鏡 68
第四章 濕式氧化程序催化液相氨之結果與討論 70
4-1 奈米級Cu-La-Ce複合金屬觸媒之處理效能 70
4-1-1 Cu-La-Ce複合金屬觸媒篩選 70
4-1-2 Cu-La-Ce複合金屬觸媒之特性分析 82
4-1-3 添加Cu-La-Ce複合金屬觸媒對WAO處理效能
之影響 97
4-1-4 觸媒填充量對WAO處理效能之影響 106
4-1-5 溫度對WAO處理效能之影響 108
4-1-6 pH值對WAO處理效能之影響 120
4-1-7 氧氣分壓力對WAO處理NH3效能之影響 133
4-1-8 NH3初始濃度對WAO處理效能之影響 147
4-1-9 觸媒長時間穩定測試 151

4-2 奈米級Cu-ACF觸媒之之處理效能 168
4-2-1 Cu-ACF觸媒篩選 168
4-2-2 添加Cu-ACF觸媒對WAO處理效能之影響 199
4-2-3 溫度對WAO處理效能之影響 203
4-2-4 氧氣分壓力對WAO處理效能之影響 206
4-2-5 NH3初始濃度對WAO處理效能之影響 209
4-2-6 觸媒長時間穩定測試 209
第五章 氣相氨選擇性催化之結果與討論 216
5-1 奈米級Cu-Ce複合金屬觸媒之處理效能 216
5-1-1 Cu-Ce複合金屬觸媒篩選 216
5-1-2 添加Cu-Ce複合金屬觸媒對SCO處理效能
之影響 237
5-1-3 溫度及氧氣濃度對SCO處理效能之影響 241
5-1-4 溫度對SCO處理效能之影響 243
5-1-5 氧氣濃度對SCO處理效能之影響 252
5-1-6 觸媒長時間穩定測試 260
5-2 奈米級Pt-Pd-Rh陶瓷觸媒之處理效能 278
5-2-1 Pt-Pd-Rh陶瓷觸媒之特性分析 278
5-2-2 添加Pt-Pd-Rh陶瓷觸媒對SCO處理效能之影響 297
5-2-2-1 溫度效應對添加Pt-Pd-Rh陶瓷觸媒處理
之影響 297
5-2-2-2 氧氣濃度對SCO處理NH3效能之影響 302
5-2-2-3 初始濃度對添加Pt-Pd-Rh陶瓷觸媒處理
效能之影響 304
5-2-3 添加Pt-Pd-Rh陶瓷觸媒處理NH3對產物選擇率
之影響 311
第六章 結論與建議 316
6-1 結論 316
6-1-1 添加奈米級Cu-La-Ce複合金屬觸媒於濕式
氧化程序催化液相氨 316
6-1-2 添加奈米級Cu-ACF觸媒於濕式氧化程序催
化液相氨 317
6-1-3 添加奈米級Cu-Ce複合金屬觸媒於氣相氨選擇
性催化 319
6-1-4 添加奈米級Pt-Pd-Rh陶瓷觸媒於氣相氨選擇
性催化 320
6-2 建議 321

參考文獻 323
附錄 個人簡介 374

表 目 錄
Table 2-1 The various forms of oxidation and reduction states of compounds of nitrogen in the water/soil environment. 13
Table 2-2 Toxicity of nitrogenous compounds and their oxidation
by-products. 16
Table 2-3 Application of cordierite cellular ceramic substances.. 46
Table 4-1 BET area and texture properties of catalysts after
different treatments.. 84
Table 4-2 Surface composition analysis of the test catalyst.. 88
Table 4-3 Product selectivity from ammonia oxidation using
copper-lanthanum-cerium composite catalyst at different
temperature in a continuous trickle-bed reactor. 114
Table 4-4 The first-order reaction equation over the Cu/La/Ce
(7/2/1) composite catalyst under various pressures.. 136
Table 4-5 The first-order reaction equation without catalyst under
various pressures.. 137
Table 4-6 Equations of the WO of ammonia solution in Figure
4-21. 138
Table 4-7 Energy of activation and frequency factor for the wet
oxidation of ammonia solution. 143
Table 4-8 BET area and texture properties of ACF.. 176
Table 4-9 Surface composition analysis of the test catalyst.. 186
Table 4-10 Surface elements composition analysis and atomic ratios
of the test catalyst... 187
Table 5-1 Surface composition analysis of the test catalyst... 227
Table 5-2 Surface composition analysis of the cordierite
compositions... 284

圖 目 錄
Figure 1-1 Schematic representation of research structure. 8
Figure 2-1 A schematic survey on the transformation and
distribution of N compounds in various reservoirs
of the environment. 12
Figure 2-2 Flow diagram of a WO process. 19
Figure 2-3 The pathway for destruction of organic compound by
WAO. 22
Figure 2-4 Distribution of ammonia and ammonium ion with pH
in aqueous solution.. 27
Figure 2-5 Optical photograph of uncoated activated carbon fibers
(ACFs). 40
Figure 2-6 Optical photograph of Cu-ACF catalyst before calcined.
The blue-white particle is the result of the copper
adsorption, and indicates copper oxide crystals
formed on the surface.. 40
Figure 2-7 The surface function group of ACF. 43
Figure 2-8 Thermal expansion coefficients (298~1273 K) of
extruded cordierite compositions in relation to
stoichiometry.. 47
Figure 2-9 Optical photograph of a monolithic catalyst showing:
(a) cordierite cellular ceramic, (b) noble metal-
catalyzed gamma alumina washcoat, and (c)
open cellular channel.. 48
Figure 3-1 Schematic diagram of the wet oxidation setup. 53
Figure 3-2 Schematic diagram of the catalytic wet oxidation
employed to carry out the ammonia oxidation
over catalyst in a trickle-bed reactor.. 55
Figure 3-3 The schematic diagram of the catalytic oxidation
employed to carry out the ammonia oxidation
over catalyst of the tubular fixed-bed reaction
(TFBR) system.. 57
Figure 4-1 Effect of various calcinations temperature on the
Cu/La/Ce composite catalysts for the conversion
of NH3 in a batch reactor.. 71
Figure 4-2 Changes of specific surface area of Cu/La/Ce (7:2:1)
composite catalysts of various calcinations
temperature in a batch reactor after lifetime
reaction.. 73
Figure 4-3 Adsorption and desorption isotherms diagram of the
various metal content of Cu/La/Ce composite
catalysts.. 75
Figure 4-4 FTIR pattern of various calcinations temperature on the
Cu/La/Ce catalyst.. 77
Figure 4-5 A UV-Vis absorption spectra of the various calcinations
temperature on the Cu/La/Ce composite
catalysts in a batch reactor.. 79
Figure 4-6 Changes in particle sizes distribution with various
calcinations temperature on the Cu/La/Ce
composite catalysts.. 81
Figure 4-7 Thermal gravimetric analysis (TGA) diagram of
Cu/La/Ce (7:2:1) catalyst. 83
Figure 4-8 Changes in adsorption and desorption isotherms
diagram of the Cu/La/Ce (7:2:1) composite
catalysts showing: (a) fresh, (b) after 72 hours
activity test in a batch reactor.. 86
Figure 4-9 SEM with dot mapping photographs result of various
contents on the fresh Cu/La/Ce (7:2:1) catalyst.
(a) Original magnification: × 3000, (b) Cu,
(c) La and (d) Ce.. 89
Figure 4-10 SEM with dot mapping photographs result of various
contents on the Cu/La/Ce (7:2:1) catalyst after
activity test. (a) Original magnification: × 3000,
(b) Cu , (c) La and (d) Ce.. 90
Figure 4-11 SEM photograph that shows of Cu/La/Ce (7/2/1)
composite catalysts that is (a) fresh and (b)
after activity test.. 92
Figure 4-12 AEM photograph and selected-area electron diffraction
(SAED) analysis of the fresh Cu-La-Ce (7:2:1)
catalyst. (a) Original magnification: × 300,000,
(b) Original magnification: × 300,000 and (c) EDS
analysis of (b).. 94
Figure 4-13 FTIR pattern of various metal content on ammonia
removal of the catalytic wet oxidation over the
Cu/La/Ce composite catalysts in a batch reactor.. 96
Figure 4-14 A UV-Vis absorption spectra of metal content on
ammonia removal of the catalytic wet oxidation
over the composite catalysts in a batch reactor.. 98
Figure 4-15 Changes in particle sizes distribution with various metal
content on ammonia removal of the catalytic wet
oxidation over the composite catalysts.. 99
Figure 4-16 Effect of metal content on ammonia removal of the
catalytic wet oxidation over the Cu/La composite
catalysts in a batch reactor. 101
Figure 4-17 Effect of metal content on ammonia removal of the
catalytic wet oxidation over the Cu/Ce composite
catalysts in a batch reactor.. 102
Figure 4-18 Effect of metal content on ammonia removal of the
catalytic wet oxidation over the Cu/La/Ce composite
catalysts in a batch reactor.. 103
Figure 4-19 XRD pattern of the Cu/La/Ce (7/2/1) composite
catalysts. (a) fresh, (b) after activity test.. 105
Figure 4-20 Effect of various catalyst content on ammonia removal
of the catalytic wet oxidation over the Cu/La/Ce
composite catalysts in a batch reactor. 107
Figure 4-21 Effect of temperature on the wet oxidation of the
ammonia solution.. 109
Figure 4-22 Effect of reaction temperature and liquid hourly space
velocity on removal of the catalytic wet oxidation of
ammonia solution over the Cu/La/Ce (7:2:1)
composite catalysts in a continuous trickle-bed
reactor.. 112
Figure 4-23 Gaseous nitrogen oxides in the trickle-bed reactor.. 118
Figure 4-24 Effect of reaction temperature of the XRD pattern over
the Cu/La/Ce (7:2:1) catalysts.. 119
Figure 4-25 pH fluctuation of the wet oxidation of the ammonia
solution.. 121
Figure 4-26 Effect of pH on the decomposition of ammonia during
the wet oxidation process.. 122
Figure 4-27 Distribution of ammonia and ammonium ion with pH
in aqueous solution.. 123
Figure 4-28 Effect of liquid flow rate and pH on ammonia
conversion at 503 K in the trickle-bed reactor.. 125
Figure 4-29 Effect of pH on the decomposition of NH3 profiles
during both the catalytic and the noncatalytic wet
oxidations of ammonia solution at 503 K in the
trickle-bed reactor.. 126
Figure 4-30 Plot of the resultant pH with NO2- and NO3- formation
during the noncatalytic wet oxidations of ammonia
solution at 503 K in the trickle-bed reactor.. 127
Figure 4-31 NO2- and NO3- formation at 503 K in the trickle-bed
reactor.. 129
Figure 4-32 Plot of the resultant pH with NO2- and NO3- formation
at 423 K in the trickle-bed reactor.. 130
Figure 4-33 Plot of the resultant pH with NO2- and NO3- formation
at 473 K in the trickle-bed reactor.. 131
Figure 4-34 Plot of the resultant pH with NO2- and NO3- formation
at 503 K in the trickle-bed reactor.. 132
Figure 4-35 Effect of reaction pressure on the wet oxidation of the
ammonia solution.. 134
Figure 4-36 Effect of temperature and wet oxidation of the ammonia
solution. (a) noncatalytic; (b) catalyzed by
Cu/La/Ce.. 139
Figure 4-37 Plot ln k vs. T-1on wet oxidation of the ammonia
solution. (a) first step; (b) second step.. 140
Figure 4-38 Plot ln k vs. T-1on catalyst wet oxidation of the
ammonia solution. (a) first step; (b) second step.. 141
Figure 4-39 Effect of reaction pressure on ammonia removal of
the catalytic wet oxidation over the Cu/La/Ce
(7:2:1) composite oxide catalyst in a continuous
trickle-bed reactor.. 145
Figure 4-40 Effect of the initial concentration of ammonia in the
solution on the decomposition of ammonia during
the wet oxidation process.. 148
Figure 4-41 Effect of initial concentration on ammonia removal of
the catalytic wet oxidation over the Cu/La/Ce
(7:2:1) composite oxide catalyst in a continuous
trickle-bed reactor.. 150
Figure 4-42 Effect of liquid flow rate on ammonia conversion and
by-products selectivity at 503 K in the trickle-bed
reactor.. 152
Figure 4-43 NH3 removal profiles during both the catalytic (over
the Cu/La/Ce(7:2:1) composite catalyst ) and
the noncatalytic wet oxidations of ammonia
solution.. 154
Figure 4-44 Effect of the reaction time on Cu/La/Ce (7:2:1)
composite catalysts in a continuous trickle-bed
reactor.. 155
Figure 4-45 FTIR pattern of the Cu/La/Ce (7:2:1) composite
catalysts. (a) fresh, (b) after activity test.. 158
Figure 4-46 ATR pattern of the Cu/La/Ce (7:2:1) catalyst. (a) fresh,
(b) after activity test.. 160
Figure 4-47 A UV-Vis absorption spectra of the fresh and aged
Cu/La/Ce composite catalysts in a batch reactor.. 161
Figure 4-48 Changes in particle sizes distribution of the Cu/La/Ce
(7/2/1) composite catalysts showing: (a) fresh, (b)
after 72 hours activity test.. 163
Figure 4-49 (TEM photograph and selected-area electron diffraction
(SAED) analysis on the Cu/La/Ce
(7:2:1) catalyst in a batch reactor. (a) Fresh and (b) after activity test... 164
Figure 4-50 TEM photograph and selected-area electron diffraction
(SAED) analysis on the Cu/La/Ce (7:2:1) catalyst in
the trickle-bed reactor. (a) Fresh and (b) after
activity test.. 165
Figure 4-51 Effect of various calcinations temperature on the Cu-
ACF catalysts for the conversion of NH3 in a
continuous trickle-bed reactor.. 167
Figure 4-52 NH3 oxidation reaction mechanism during the catalytic
(over the Cu/La/Ce(7:2:1) composite catalyst ) of ammonia solution.. 169
Figure 4-53 Optical photographs of the Cu-ACF catalyst by various
calcining temperatures (a) 473 K, (b) 573 K,
(c) 673 K and (d) 773 K.. 171
Figure 4-54 Effect of various copper loading on the Cu-ACF
catalyst for the conversion of NH3.. 174
Figure 4-55 FTIR spectra of the ACF. 177
Figure 4-56 FTIR-ATR spectra of the ACF. 179
Figure 4-57 UV-Vis absorption spectra on ammonia removal of
the catalytic wet oxidation of (a) fresh and (b) after
activity test catalyst. 181
Figure 4-58 The particle sizes distribution of activated carbon
fibers (ACFs). 183
Figure 4-59 TGA-DTA curve of the Cu-ACF catalyst. 184
Figure 4-60 SEM photograph of the fresh activated carbon fiber
substrate by (a) fracture surface and (b) fiber
surface. 190
Figure 4-61 Optical photographs of the Cu-ACF catalyst of (a)
cleaned activated carbon fiber before impregnation,
(b) before calcined, (c) after calcined and (d) aged
activated carbon fiber for the conversion of NH3.. 191
Figure 4-62 TEM photograph and elected-area electron diffraction
(SAED) analysis of the Cu-ACF catalyst. (a) before
calcined, (b) after calcined and (c) after activity
test.. 193
Figure 4-63 The Crystallography of the CuO.. 196
Figure 4-64 AEM photograph of the fresh Cu-ACF catalyst. (a)
Original magnification × 25,000, (b) Original
magnification × 500,000 and (c) EDS analysis of
(b).. 197
Figure 4-65 AEM photograph of the fresh Cu-ACF catalyst. (a)
Original magnification × 50,000, (b) Original
magnification × 500,000 and (c) EDS analysis of
(b).. 198
Figure 4-66 Effect of liquid flow rate on ammonia conversion and
N2 selectivity at 463 K in the trickle-bed reactor.. 200
Figure 4-67 XRD pattern of the Cu-ACF catalyst of (a) cleaned
activated carbon fiber before impregnation, (b) before
calcined, (c) after calcined and (d) aged activated
carbon fiber for the conversion of NH3.. 202
Figure 4-68 Effect of reaction temperature on removal of the
catalytic wet oxidation of ammonia solution over
the Cu-ACF catalysts in a continuous trickle-bed
reactor.. 204
Figure 4-69 Effect of reaction pressure on ammonia removal of
the catalytic wet oxidation over the Cu-ACF
catalyst in a continuous trickle-bed reactor.. 207
Figure 4-70 Effects of initial concentration on the conversion in
oxidation of ammonia over Cu-ACF catalyst.. 210
Figure 4-71 NH3 removal profiles during the catalytic (over the
Cu-ACF catalyst ) of ammonia solution.. 211
Figure 4-72 FTIR pattern of the Cu-ACF catalysts. (a) before
calcined, (b) after calcined and (c) after activity
test.. 214
Figure 4-73 NH3 oxidation reaction mechanism during the catalytic
(over the Cu-ACF catalyst ) of ammonia solution.. 215
Figure 5-1 BET of the various metal content of Cu/Ce composite
catalysts.. 217
Figure 5-2 Adsorption and desorption isotherms diagram of the
various metal content of Cu/Ce composite
catalysts.. 219
Figure 5-3 FTIR pattern of various metal content on the Cu/Ce
catalyst for the conversion of NH3.. 220
Figure 5-4 UV-Vis absorption spectra of the metal content on the
Cu/Ce catalyst for the conversion of NH3.. 222
Figure 5-5 Changes in particle sizes distribution of the various
metal content on the Cu/Ce catalyst for the
conversion of NH3.. 223
Figure 5-6 Thermal gravimetric analysis (TGA) diagram of Cu/Ce
(6:4) catalyst for the conversion of NH3.. 225
Figure 5-7 SEM with dot mapping photographs result of various
contents on the fresh Cu/Ce (6:4) catalyst. (a)
Originalmagnification: × 3000, (b) Cu and (c)
Ce.. 228
Figure 5-8 SEM with dot mapping photographs result of various
contents on the fresh Cu/Ce (6:4) catalyst after
activity test. (a) Original magnification: × 3000,
(b) Cu and (c) Ce.. 229
Figure 5-9 SEM photograph of (a) fresh and (b) after activity test
on the Cu/Ce (6:4) catalyst for the conversion
of NH3.. 231
Figure 5-10 AEM photograph and elected-area electron diffraction
(SAED) analysis of the fresh Cu/Ce (6:4) catalyst.
(a) Original magnification: × 300,000, (b) Original
magnification: × 300,000.. 232
Figure 5-11 HRTEM photograph of lattice image of various
magnifications on the fresh Cu/Ce (6:4) catalyst. (a)
Original magnification by Fig. 5-10 (a-1): × 500,000,
(b) Original magnification by Fig. 5-10 (a-2): ×
500,000 and (c) EDS analysis of (b).. 233
Figure 5-12 HRTEM photograph of lattice image of the fresh Cu/Ce
(6:4) catalyst. (a) Original magnification by Fig. 5-10
(a-3): × 500,000, (b) Original magnification by Fig.
5-10 (a-4): × 500,000 and (c) EDS analysis of (b).. 234
Figure 5-13 HRTEM photograph of lattice image and elected-area
electron diffraction (SAED) analysis of the fresh
Cu/Ce (6:4) catalyst. (a) Original magnification by
Fig. 5-10 (b-5): × 500,000, (b) Original magnification
by Fig. 5-10 (b-6): × 500,000.. 235
Figure 5-14 Effect of various NH3 concentrations on the Cu/Ce
(6:4) catalyst for the conversion of NH3.. 238
Figure 5-15 XRD pattern of the various metal content on the Cu/Ce
catalyst for the conversion of NH3.. 240
Figure 5-16 Effect of the oxygen concentration on the Cu/Ce (6:4)
catalyst for the conversion of NH3.. 242
Figure 5-17 Effect of the oxygen content with reaction rates on the
Cu/Ce (6:4) catalyst for the conversion of NH3.. 245
Figure 5-18 Effect of space velocity on the Cu/Ce (6:4) catalyst for
the conversion of NH3 as function of temperature.. 246
Figure 5-19 Effect of empty bed residence time (EBRT) on the
Cu/Ce (6:4) catalyst for the conversion of NH3 as
function of temperature. 248
Figure 5-20 Scheme illustrating the mechanism of the NO-NH3
reaction over Cu-based catalyst in the presence of
oxygen proposed... 251
Figure 5-21 Effect of various NH3 concentrations on the Cu/Ce (6:4)
catalyst for the conversion of NH3.. 253
Figure 5-22 Effect of various ammonia concentrations with reaction
rates on the Cu/Ce (6:4) catalyst for the conversion
of NH3.. 255
Figure 5-23 Relationship of the ammonia conversion, N2 yield, and
NO yield at various temperatures over the Cu/Ce
(6:4) catalyst.. 256
Figure 5-24 Relationship of the ammonia conversion, N2 yield, and
NO yield at various temperatures over the Cu/Ce
(6:4) catalyst.. 257
Figure 5-25 Relationship of the ammonia conversion, N2 yield, and
NO yield at various temperatures over the Cu/Ce
(6:4) catalyst.. 258
Figure 5-26 Relationship of the ammonia conversion, N2 yield, and
NO yield at various temperatures over the Cu/Ce (6:4) catalyst. 259
Figure 5-27 Effect of the reaction time on the Cu/Ce (6:4) catalyst
for the conversion of NH3.. 261
Figure 5-28 Effect of reaction temperature with changes of specific surface area on the Cu/Ce catalyst for the conversion of
NH3.. 263
Figure 5-29 Adsorption and desorption isotherms diagram of the
Cu/Ce (6:4) composite catalysts. (a)fresh and (b)
aged.. 266
Figure 5-30 XRD pattern of (a) fresh and (b) after activity test on
the Cu/Ce (6:4) catalyst.. 267
Figure 5-31 FTIR pattern of the Cu/Ce (6:4) composite catalysts.
(a) fresh, (b) after activity test. 269
Figure 5-32 ATR pattern of the Cu/Ce (6:4) catalyst. (a) fresh, (b)
after activity test.. 271
Figure 5-33 UV-Vis absorption spectra of (a) fresh and (b) after
activity test Cu/Ce (6:4) catalyst.. 272
Figure 5-34 Changes in particle sizes distribution of the Cu/Ce
(6:4) composite catalysts. (a) fresh, (b) after 72
hours activity test. 274
Figure 5-35 TEM photograph of various magnifications on the
fresh Cu/Ce (6:4) catalyst. (a) Original magnification:
× 100,000, (b) Original magnification: × 150,000, (c)
Original magnification: × 205,000 and (d) selected-
area electron diffraction (SAED) analysis of (c). 275
Figure 5-36 TEM photograph of various magnifications on the Cu/Ce
(6:4) catalyst after activity test. (a) Original
magnification: × 62,000, (b) Original magnification:
× 100,000, (c) Original magnification: × 150,000
and (d) selected-area electron diffraction (SAED)
analysis of (c).. 276
Figure 5-37 FTIR pattern of the (a) fresh, (b) after activity test
and (c) cordierite monolith of Pt-Pd-Rh cordierite
monolith catalyst for the conversion of NH3.. 279
Figure 5-38 UV-Vis absorption spectra of (a) fresh and (b) after
activity test Pt-Pd-Rh cordierite monolith
catalyst.. 280
Figure 5-39 TGA-DTA curve of the cordierite monolith. 281
Figure 5-40 TGA-DTA curve of the Pt-Pd-Rh cordierite monolith
catalyst.. 282
Figure 5-41 SEM with dot mapping photographs result of various
contents on the ceramic support. (a) Original
ceramic support, (b) Mg , (c) Al and (d) Si.. 285
Figure 5-42 SEM with dot mapping photographs result of various
contents on the fresh Pt-Pd-Rh cordierite monolith
catalyst. (a) Original magnification: × 60, (b) Mg,
(c) Al and (d) Si.. 286
Figure 5-43 SEM with dot mapping photographs result of various
contents on the fresh Pt-Pd-Rh cordierite monolith
catalyst. (a) Original magnification: × 60, (b) Pt,
(c) Pd and (d) Rh.. 287
Figure 5-44 Optical photographs of cross-sectional areas of various
magnifications on the fresh Pt-Pd-Rh cordierite
monolith catalyst.. 289
Figure 5-45 SEM photographs of various magnifications on the
fresh cordierite monolith. (a) Original magnification:
× 50, (b) Original magnification: × 1,000, (c) Original
magnification: × 3,000 and (d) Original magnification:
× 5,000.. 290
Figure 5-46 STEM photograph of a fresh Pt-Pd-Rh cordierite
monolith catalyst. Original magnification: ×
10,000. 292
Figure 5-47 TEM photograph and elected-area electron diffraction
(SAED) analysis of the fresh Pt-Pd-Rh cordierite
monolith catalyst. (a) fresh catalyst by original
magnification: × 81,000, (b) after activity test by
original magnification: × 81,000, (c) after activity
test by original magnification: × 100,000 and (d)
after activity test by original magnification: ×
100,000. 293
Figure 5-48 AEM photograph of the fresh Pt-Pd-Rh cordierite
monolith catalyst. (a) Original magnification ×
80,000, (b) Original magnification × 500,000 and
(c) EDS analysis of (b).. 295
Figure 5-49 AEM photograph and elected-area electron diffraction
(SAED) analysis of the fresh Pt-Pd-Rh cordierite
onolith catalyst. (a) Original magnification ×
80,000, (b) Original magnification × 500,000 and
(c) EDS analysis of (b).. 296
Figure 5-50 Effect of the oxygen concentration on the Pt-Pd-Rh
cordierite monolith catalyst for the conversion
of NH3. 298
Figure 5-51 XRD pattern of the Pt-Pd-Rh cordierite monolith
catalysts. (a) cordierite monolith, (b) fresh and
(c) after activity test. 301
Figure 5-52 Effect of space velocity on the Pt-Pd-Rh cordierite
monolith catalyst for the conversion of NH3 as
function of temperature.. 303
Figure 5-53 Effect of various NH3 concentrations on the Pt-Pd-Rh
cordierite monolith catalyst for the conversion
of NH3.. 305
Figure 5-54 Optical photographs of various magnifications on the
fresh Pt-Pd-Rh cordierite monolith for the conversion
of NH3. The dark area is the result of the NH3
adsorption, and indicates oxide crystals formed on the
surface.. 306
Figure 5-55 Optical photographs of various magnifications on the
fresh Pt-Pd-Rh cordierite monolith for the conversion
of NH3. The green area is the result of the NH3
adsorption, and indicates oxide crystals formed
on the surface.. 307
Figure 5-56 Optical photographs of various magnifications on the
fresh Pt-Pd-Rh cordierite monolith for the conversion
of NH3. The green and red areas are the result of
the NH3 adsorption, and indicates oxide crystals
formed on the surface.. 308
Figure 5-57 Optical photographs of various magnifications on the
fresh Pt-Pd-Rh cordierite monolith for the conversion
of NH3. The green area is the result of the NH3
adsorption, and indicates oxide crystals formed on
the surface. 309
Figure 5-58 Relationship of the ammonia conversion, N2, NO and
NO2 yield at various temperatures over the Pt-Pd-Rh
cordierite monolith catalyst.. 312
Figure 5-59 Relationship of the ammonia conversion, N2, NO and
NO2 yield at various temperatures over the Pt-Pd-Rh
cordierite monolith catalyst.. 313
Figure 5-60 Relationship of the ammonia conversion, N2, NO and
NO2 yield at various temperatures over the Pt-Pd-Rh
cordierite monolith catalyst.. 314
Figure 5-61 Relationship of the NH3 conversion, N2, NO and NO2
yield at various temperatures over the Pt-Pd-Rh
cordierite monolith catalyst.. 315
Adewuyi, Y. G. (2001) “Sonochemistry: Environmental Science and Engineering Applications”, Industry Engineering Chemistry Research, Vol.40, No.22, pp.4681-4715.
Amin, N. A. S., Ton, E. F. and Manan, Z. A. (2003) “Selective Reduction of NOx with C3H6 over Cu and Cr Promoted CeO2 Catalysts”, Applied Catalysis B:Environmental, Vol.43, No.1, pp.57-69.
Anderson, J. R. and Pratt, K. C. (1985) Introduction to Characterization and Testing of Catalysts, Academic Press, Melbourne, Australia.
Alemany, L. J., Berti, F., Busca, G., Ramis, G., Robba, D., Toledo, G. P. and Trombetta, M. (1996) “Characterization and Composition of Commercial V2O5-WO3-TiO2 Catalysts”, Applied Catalysis B:Environmental, Vol.10, No.4, pp.299-311.
Almquist, C. B. and Biswas, P. (2002) “Role of Synthesis Method and Particle Size of Nanostructured TiO2 on Its Photoactivity”, Journal of Catalysis, Vol.212, No.2, pp.145-156.
Andreozzi, R., Caprio, V., Insola, A. and Marotta, R. (1999) “Advanced Oxidation Processes (AOPs) for Water Purification and Recovery”, Catalysis Today, Vol.53, No.1, pp.51-59.
Angelidis, T. N. and Sklavounos, S. A. (1995) “A SEM-EDS Study of New and Used Automotive Catalyst”, Applied Catalysis A: General, Vol.133, No.1, pp.121-132.
Armbruster, T., Simoncic, P., Döbelin, N., Malsy, A. and Yang, P. (2003) “Cu2+-acetate and Cu2+-ammine Exchanged Heulandite: a Structural Comparison”, Microporous and Mesoporous Materials, Vol.57, No.2, pp.121-131.
Armor, J. N. (1992) “Environmental Catalysis”, Applied Catalysis B: Environmental, Vol.1, pp.221-256.
Armor, J. N. (1995) “Catalytic Reduction of Nitrogen Oxides with Methane in the Presence of Excess Oxygen: a Review”, Catalysis Today, Vol.26, No.2, pp.147-158.
Armor, J. N. (2001) “New Catalytic Technology Commercialized in the USA during the 1990s”, Applied Catalysis A: General, Vol.222, No.1-2, pp.407-426.
Auroux, A., Sprinceana, D. and Gervasini, A. (2000) “Supported Effects on de-NOx Catalytic Properties of Supported Tin Oxides”, Journal of Catalysis, Vol.195, No.1, pp.140-150.
Baolong, Z., Basishun, C., Keyu, S., Shangjin, H., Xiaodong, L., Zongjie, D. and Kelian, Y. (2003) “Preparation and Characterization of Nanocrystal Grain TiO2 Porous Microspheres”, Applied Catalysis B:Environmental, Vol.40, No.3, pp.253-258.
Barton, P. K. and Atwater, J. M. (2002) “Nitrous Oxide Emissions and Anthropogenic Nitrogen in Wastewater and Solid Waste”, Journal of Environmental Engineering, Vol.128, No.2, pp.137-150.
Baumgärtel, P., Lindsay, R., Giessel, T., Schaff, O., Bradshaw, A. M. and Woodruff, D. P. (2000) “Structure Determination of Ammonia on Cu(111)† ”, The Journal of Physical Chemistry B, Vol.104, No.14, pp.3044-3049.
Barbier Jr., J., Oliviero, L., Renard, B. and Duprez, D. (2002) “Catalytic Wet Air Oxidation of Ammonia over M/CeO2 Catalysts in the Treatment of Nitrogen-containing Pollutants”, Catalyst Today, Vol.75, No.1-4, pp.29-34.
Bazhenova, T. A. and Shilov, A. E. (1995) “Nitrogen Fixation in Solution”, Coordination Chemistry Reviews, Vol.144, pp.69-145.
Bedrane, S., Descorme, C. and Duprez, D. (2002) “Investigation of the Oxygen Storage Process on the Ceria- and Ceria-zirconia-supported Catalysts”, Catalysis Today, Vol.75, No.1-4, pp. 401-405.
Beld, L. V. D., Bijl, M. P. G., Reinders, A., Werf, B. V. D. and Westerterp, K. R. (1994) “The Catalytic Oxidation of Organic Contaminants in a Packed Bed Reactor”, Chemical Engineering Science, Vol.24, No.24A, pp.4361-4373.
Bernal, S., Calvino, J. J., Cauqui, M. A., Gatica, J. M., Cartes, C. L., Omil, J. A. P. and Pintado, J. M. (2003) “Some Contributions of Electron Microscopy to the Characterisation of the Strong Metal-support Interaction Effect”, Catalysis Today, Vol.77, No.4, pp.385-406.
Beyrich, J., Gantschi, W., Regenass, W. and Wiedmann, W. (1979) “Design of Reactors for the Wet Air Oxidation of Industrial Waste Water by Meaner of Computer Simulation”, Computer & Chemical Engineering, Vol.3, p.161.
Blanco, J., Avila, P. and Fierro, J. L. G. (1993) “Influence of Nitrogen Dioxide on the Selective Reduction of NOx with a Catalyst of Copper and Nickel Oxides”, Applied Catalysis A: General, Vol.96, pp.331-343.
Blount, M. C., Kim, D. H. and Falconer, J. H. (2001) “Transparent Thin-film TiO2 Photocatalysts with High Activity”, Environmental Science & Technology, Vol.35, No.14, pp.2988-2994.
Boaro, M., Vicario, M., de Leitenburg, C., Dolcetti, G. and Trovarelli, A. (2003) “The Use of Temperature-Programmed and Dynamic/Transient Methods in Catalysis: Characterization of Ceria-based, Model Three-way Catalysts”, Catalysis Today, Vol.77, No.4, pp.407-417.
Boccuzzi, F., Chiorino, A., Martra, G., Gargano, M., Ravasio, N. and Carrozzini, B. (1997) “Preparation, Characterization, and Activity of Cu/TiO2 Catalysts: I. Influence of the Preparation Method on the Dispersion of Copper in Cu/TiO2”, Journal of Catalysis, Vol.165, No.2, pp.129-139.
Bonsen, E., Schroeter, S., Jacobs, H. and Broekaert, J. A. C. (1997) “Photocatalytic Degradation of Ammonia with TiO2 as Photocatalyst in the Laboratory and Under the Use of Solar Radiation”, Chemosphere, Vol.35, No.7, pp.1431-1445.
Bradley, S. A., Gattuso, M. J. and Bertolacini, R. J. (1989) Characterization and Catalyst Development: An Interactive Approach, American Chemical Society, Washington, D. C., USA.
Bradley, J. M., Hopkinson, A. and King, D.A. (1995) “Control of a Biphasic Surface Reaction by Oxygen Coverage: The Catalytic Oxidation of Ammonia over Pt{100}”, The Journal of Physical Chemistry, Vol.99, No.46, pp.17032-17042.
Briggs, W. S. (1990) “Pelleted Catalyst Systems”, pp.289-292 in Alumina Chemicals: Science and Technology Handbook. Edited by L. D. Hart. The American Ceramic Society, Inc, Ohio, USA.
Buciuman, F. C. and Kraushaar-Czarnetzki, B. (2003) “Ceramic Foam Monoliths as Catalyst Carriers. 1. Adjustment and Description of the Morphology”, Industry Engineering Chemistry Research, Vol.42, No.9, pp.1863-1869.
Buelna, G. and Lin, Y. S. (1999) “Sol-gel-derived Mesoporous γ-alumina Granules”, Microporous and Mesoporous Materials, Vol.30, No.2-3, pp.359-369.
Buelna, G. and Lin, Y. S. (2001) “Preparation of Spherical Alumina and Copper Oxide Coated Alumina Sorbents by Improved Sol-gel Granulation Process”, Microporous and Mesoporous Materials, Vol.42, No.1, pp.67-76.
Buelna, G., Lin, Y. S., Liu, L. X. and Lister, J. D. (2003) “Structural and Mechanical Properties of Nanostructured Granular Alumina Catalysts”, Industry Engineering Chemistry Research, Vol.42, No.3, pp.442-447.
Bullen, H. A. and Garrett, S. J. (2002) “TiO2 Nanoparticle Arrays Prepared Using a Nanosphere Lithography Technique”, Nano Letters, Vol.2, No.7, pp.739-745.
Burch, R. and Urbano, F. J. (1995) “Investigation of the Active State of Supported Palladium Catalysts in the Combustion of Methane”, Applied Catalysis A:General, Vol. 124, No.1, pp.121-138
Burch, R. (1997) “Low NOx Options in Catalytic Combustion and Emission Control ”, Catalysis Today, Vol.35, No.1-2, pp.27-36.
Burch, R. and Southward, B. W. L. (1999) “Highly Selective Catalysts for Conversion of Ammonia to Nitrogen in Gasified Biomass,” Chemical Communications,Vol.16, pp.1475-1476.
Busca, G., Lietti, L., Ramis, G. and Berti, F. (1998) “Chemical and Mechanistic Aspects of the Selective Catalytic Reduction of NOx by Ammonia over Oxide Catalysts: A Review”, Applied Catalysis B:Environmental, Vol.18, No.1-2, pp.1-36.
Burdeinaya, T. N., Davydova, M. N., Glebov, L. S. and Tret’Yakov, V. F. (1997) “Selective Catalytic Reduction of Nitrogen Oxide by Methane in Excess Oxygen on Industrial Oxide Catalysts,” Petroleum Chemistry, Vol.37, No.5, pp.422-426.
Cal, M. J., Rood, M. J. and Larson, S. M. (1997) “Gas Phase Adsorption of Volatile Organic Compounds and Water Vapor on Activated Carbon Cloth,” Energy & Fuels, Vol.11, No.2, pp.311-315.
Cant, N. W., Anbove, D. E. and Chambers, D. C. (1998) “Nitrous Oxide Formation during the Reaction of Simulated Exhaust Streams over Rhodium, Platinum and Palladium Catalysts”, Applied Catalysis B:Environmental, Vol.17, No.1-2, pp.63-73.
Canter, L. W. (1997) Nitrates in Groundwater, Lewis Publishers, New York, USA.
Carja, G., Nakamura, R. and Niiyama, H. (2002) “Copper and Iron Substituted Hydrotalcites: Properties and Catalyst Precursors for Methulamines Synthesis”, Applied Catalysis A:General, Vol. 236, No.1-2, pp.91-102.
Carrott, P. J. M., Nabais, J. M. V., Ribeiro Carrott, M. M. L. and Pajares, J. A. (2001) “Preparation of Activated Carbon Fibers from Acrylic Textile Fibers”, Carbon, Vol.39, No.10, pp.1543-1555.
Centi, G. and Perathoner, S. (1995) “Nature of active Species in Copper-based catalysts and Their Chemistry of Transformation of Nitrogen Oxides”, Applied Catalysis A:General, Vol. 132, No.2, pp.179-259.
Centi, G., Perathoner, S. and Dall’Olio, L. (1996) “Modification of the Surface Reactivity of Cu-MFI during Chemisorption and Transformation of the Reagents in the Selective Reduction of NO with Propane and O2,” Applied Catalysis B:Environmental, Vol.7, No.3-4, pp.359-377.
Centi, G. and Perathoner, S. (1998) “The Role of Ammonia Adspecies on the Pathways of Catalytic Transformation at Mixed Metal Oxide Surfaces”, Catalysis Reviews-Sci. Eng., Vol. 40, No, 1-2, pp.175-208.
Centi, G., Ciambelli, P., Perathoner, S. and Russo, P. (2002) “Environmental Catalysis: Trends and Outlook”, Catalysis Today, Vol.75, No.1-4, pp.3-15.
Chakchouk, M., Deiber, G., Foussard J. N. and Debellefontaine, H. (1995) “Complete Treatment of Nitrogeneous Pollutants by Catalytic Oxidation”, Environmental Technology, Vol.16, No.7, pp.645-655.
Chang, C. J., Lin, J. C. and Chen, C. K. (1994) “Effects of Temperature and Cu2+ Catalyst on Liquid-Phase Oxidation of Industrial Wastewaters”, Journal of Chemical Technology Biotechnology, Vol. 57, pp.355-361.
Chao, Z. S. and Ruckenstein, E. (2002) “Structural and Morphological Control of Mesostructures: Vanadium Based Nanofibers”, Chemistry of Materials, Vol.14, No.11, pp.4611-4618.
Chen, L., Horiuchi, T., Osaki, T. and Mori, T. (1999) “Catalytic Selective Reduction of NO with Propylene over Cu-Al2O3 Catalysts: Influence of Catalyst Preparation Method ”, Applied Catalysis B: Environmental, Vol.23, No.4, pp.259-269.
Chiang, K., Amal, R. and Tran, T. (2002) “Photocatalytic Degradation of Cyanide using Titanium Dioxide Modified with Copper Oxide”, Advances in Environmental Research, Vol.6, No.4, pp.471-485.
Chiang, Y. M., Lavik, E. B., Kosacki, I., Tuller, H. L. and Ying, J. Y. (1996) “Defect and Transport Properties of Nanocrystalline CeO2-X”, Applied Physical Letter, Vol.69, No.2, pp.185-187.
Chien, C. C., Chung, W. P. and Huang, T. J. (1995) “Effect of Heat-treatment Conditions on Cu-Cr/γ-alumina Catalyst for Carbon Monoxide and Propene Oxidation”, Applied Catalysis A: General, Vol.131, No.2, pp.73-87.
Chien, C. C., Shi, J. Z. and Huang, T. J. (1997) “Effect of Oxygen Vacancy on CO-NO-O2 Reaction over Yttria-Stabilized Zirconia-supported Copper Oxide Catalyst”, Industry Engineering Chemistry Research, Vol.36, No.5, pp.1544-1551.
Chjar, Z., Primet, M. and Praliaud, H. (1998) “Comparison of the C3H8 Oxidation by NO or by O2 on Copper-based Catalysts”, Journal of Catalysis, Vol.180, No.2, pp.279-283.
Cho, S. P., Hong, S. C. and Hong, S. I. (2002) “Photocatalytic Degradation of the Landfill Leachate Containing Refractory Matters and Nitrogen Compounds”, Applied Catalysis B: Environmental, Vol.39, No.2, pp.125-133.
Choi, J. C., Kim, Y. and Yoon, M. (2001) “Formation of Polypyrrole in Cu Ion-exchanged MCM-41”, Bull. Korean Chem. Soc., Vol.22, No.9, pp.1045-1048.
Chou, M. S. and Chiou, J. H. (1997) “Modeling Effects of Moisture on Adsorption Capacity of Activated Carbon for VOCs”, Journal of Environmental Engineering, Vol.123, No.5, pp.437-443.
Chowdhury, A. K. and Copa, W. C. (1996) “Wet Air Oxidation of Toxic and Hazardous Organics in Industrial Wastewater”, Indian Chemical Engineer, Vol.28, No.3, pp.3-11.
Chung, Y., Hung, C., Liu, C. H. and Bai, H. (2001) “Biotreatment of Hydrogen Sulfide- and Ammonia-Containing Waste Gases by Fluidized Bed Bioreactor”, Journal of the Air & Waste Management Association, Vol.51, pp.163-172.
Cloirec, P. L., Brasquet, C. and Subrenat, E. (1997) “Adsorption onto Fibrous Activated Carbon: Applications to Water Treatment”, Energy & Fuels, Vol.11, No.2, pp.331-336.
Colón, G., Navío, J. A., Monaci, R. and Ferino, I. (2000) “CeO2-La2O3 Catalytic System Part I. Preparation and Characterisation of Catalysts”, Physical Chemistry Chemical Physics, Vol.2, pp.4453-4459.
Compañό, R. and Hullmann, A. (2002) “Forecasting the Development of Nanotechnology with the Help of Science and Technology Indicators”, Nanotechnology, Vol.13, No.3, pp.243-247.
Cooney, D. O. and Xi, Z. (1994) “Activated Carbon Catalyzes Reactions of Phenolics During Liquid-phase Adsorption”, AICHE Journal, Vol.40, pp.361-264.
Corma, A., Fornés, V. and Palomares, E. (1997) “Selective Catalytic Reduction of NOx on Cu-beta Zeolites”, Applied Catalysis B: Environmental, Vol.11, No.2, pp.233-242.
Counce, R. M. and Perona, J. J. (1983) “Scrubbing of Gaseous Nitrogen Oxides in Packed Towers”, AICHE Journal, Vol.29, No.1, pp.27-33.
Cybulski, A. and Moulijn, J. A. (1994) “Monoliths in Heterogeneous Catalysis”, Catalysis Reviews-Sci. Eng., Vol.36, No.2, pp.179-270.
Datye, A. K. and Smith, D. J. (1992) “The Study of Heterogeneous Catalysts by High-resolution Transmission Electron Microscopy”, Catalysis Reviews-Sci. Eng., Vol.34, No.1-2, pp.129-178.
De Miguel, S. R., Scelza, O. A., Roman-Martinez, M. C., de Lecca, C. S., Cazorla-Amoros, D. and Linares-Solano, A. (1998) “States of Pt in Pt/C Catalyst Precursors after Impregnation Drying and Reduction Steps”, Applied Catalysis A: General, Vol.170, No.1, pp.93-103.
de Vooys, A. C. A., Koper, M. T. M., van Santen, R. A., and van Veen, J. A. R. (2001) “The role of adsorbates in the electrochemical oxidation of ammonia on noble and transition metal electrodes”, Journal of Electroanalytical Chemistry, Vol.506, No.2, pp.127-137.
Daams, J. L. C., Villars, P. and van Vucht, J. H. N. (1991) “Atlas of Crystal Structure Types for Intermetallic Phases”, Vol. 1-4, ASM International, Ohio, USA.
Dagaut, P., Lecomte, F., Chevailler, S. and Cathonnet, M. (1999) “The Reduction of NO by Ethylene in a Jet-Stirred Reactor at 1 atm: Experimental and Kinetic Modeling”, Combustion and Flame, Vol.119, No.4, pp.494-504.
Daniell, W., Schubert, U., Glöckler, R., Meyer, A., Noweck, K. and Knözinger, H. (2000) “Enhanced Surface Acidity in Mixed Alumina-silicsa: a Low-temperature FTIR Study”, Applied Catalysis A: General, Vol.196, No.2, pp.247-260.
Debellefontaine, H. and Foussard, J. N. (2000) “Wet Air Oxidation for the Treatment of Industrial Wastes. Chemical Aspects, Reactor Design and Industrial Applications in Europe”, Waste Management, Vol.20, No.1, pp.15-25.
Deiber, G., Foussard, J. N. and Debellefontaine, H. (1997) “Removal of Nitrogenous Compounds by Catalytic Wet Air Oxidation. Kinetic Study”, Environmental Pollution, Vol.96, No.3, pp.311-319.
Delgass, W. N., Hughes, T. R. and Fadley, C. S. (1970) “X-ray Photoelectron Spectroscopy: a Tool for Research in Catalysis”, Catalysis Reviews-Sci. Eng., Vol.4, No.2, pp.179-220.
Dell’Orco, P. C., Gloyna, E. F. and Buelow, S. J. (1997) “Reactions of Nitrate Salts with Ammonia in Supercritical Water”, Industry Engineering Chemistry Research, Vol.36, No.7, pp.2547-2557.
Devlin, H. R. and Harris, I. J. (1984) “Mechanism of the Oxidation of Aqueous Phenol with Dissolved Oxygen”, Ind. Eng. Chem. Fundam., Vol.23, pp.387-392.
Dietrich, M., Randall, J. T. L. and Canney, P. J. (1985) “Wet Air Oxidation of Hazardous Organicity in Wastewater”, Environmental Progress, Vol.4, No.3, pp.171-177.
Digne, M., Sautet, P., Raybaud, P., Euzen, P. and Toulhoat, H. (2002) “Hydroxyl Groups on γ-Alumina Surfaces: a DFT Study”, Journal of Catalysis, Vol.211, No.1, pp.1-5.
Dimotakis, E. D., Cal, M. P., Economy, J., Rood, M. J. and Larson, S. M. (1995) “Chemically Treated Carbon Cloths for Removal of Volatile Organic Carbons from Gas Streams: Evidence for Enhanced Physical Adsorption”, Environmental Science & Technology, Vol.29, No.7, pp.1876-1880.
Ding, B., Kim, H., Kim, C., Khil, M. and Park, S. (2003) “Morphology and Crystalline Phase Study of Electrospun TiO2-SiO2 Nanofibers”, Nanotechnology, Vol.14, No.5, pp.532-537.
Ding, Z. Y., Li, L. X., Wade, D. and Gloyna, E. F. (1998) “Supercritical Water Oxidation of NH3 over a MnO2/CeO2 Catalyst”, Industry Engineering Chemistry Research, Vol.37, No.5, pp.1707-1716.
Dobrynkin, N. M., Batygina, M. V. and Noskov, A. S. (1998) “Solid Catalysts for Wet Oxidation of Nitrogen-containing Organic Compounds”, Catalysis Today, Vol.45, No.1-4, pp.257-260.
Donnet, J., Wang, T. K., Peng, J. C. M. and Rebouillat, S. (1998) Carbon Fibers, Marcel Dekker, Inc., New York, USA.
Dow, W. P. and Huang, T. J. (1994) “Effects of Oxygen Vacancy of Yttria-stabilized Zirconia Support on Carbon Monoxide Oxidation over Copper Catalyst”, Journal of Catalysis, Vol.147, No.1, pp.322-332.
Dow, W. P., Wang, Y. P. and Huang, T. J. (1996a) “Yttria-stabilized Zirconia Supported Copper Oxide Catalyst-I. Effect of Oxygen Vacancy of Support on Copper Oxide Reduction”, Journal of Catalysis, Vol.160, No.2, pp.155-170.
Dow, W. P. and Huang, T. J. (1996b) “Yttria-stabilized Zirconia Supported Copper Oxide Catalyst-I. Effect of Oxygen Vacancy of Support on Catalytic Activity for CO Oxidation”, Journal of Catalysis, Vol.160, No.2, pp.171-182.
Doumanidis, H. (2002) “The Nanomanufacturing Programme at the National Science Foundation”, Nanotechnology, Vol.13, No.3, pp.248-252.
Drew, C., Liu, X., Ziegler, D., Wang, X., Bruno, F. F., Whitten, J., Samuelson, L. A. and Kumar, J. (2003) “Metal Oxide-coated Polymer Nanofibers”, Nano Letters, Vol.3, No.2, pp.143-147.
Eckenfelder, W. W. (1980) Principles of Water Quality Management. CBI Publishing Company Inc., USA.
Emerson, K., Russo, R.C., Lund, R. C. and Thurston, R. V. (1975) “Aqueous Ammonia Equilibrium Calculations: Effect of pH and Temperature”, J. Fish. Res. Bd. Can., Vol.32, No.12, p.2379-2383.
Ermolenko, I. N., Lyubliner, I. P. and Gulko, N. V. (1990) Chemically Modifier Carbon Fibers and Their Application, VCH Publishers, Inc., New York, USA.
Evelyn, A., Mannick, S. and Sermon, P. A. (2003) “Unusual Carbon-Based Nanofibers and Chains among Diesel-Emitted Particles”, Nano Letters, Vol.3, No.1, pp.63-64.
Fang, H., Chou, M. and Huang, C. W. (1993) “Nitrification of Ammonia-Nitrogen in Refinery Wastewater”, Water Research, Vol.27, No.12, pp.1761-1765.
Fanning, J. C. (2000) “The Chemical Reduction of Nitrate in Aqueous Solution”, Coordination Chemistry Reviews, Vol.199, No.1, pp.159-179.
Fanson, P. T., Stradt, M. W., Lauterbach, J. and Delgass, W. N. (2002) “The Effect of Si/Al Ratio and Copper Exchange Level on Isothermal Kinetic Rate Oscillations for N2O Decomposition over Cu-ZSM-5: a Transient FTIR Study”, Applied Catalysis B: Environmental, Vol.38, No.4, pp.331-347.
Fernández-García, M., Martínez-Arias, A., Rodríguez-Ramos, I., Ferreira-Aparicio, P. and Guerrero-Ruiz, A. (1999) “Genesis of Surface and Bulk Phases in Rhodium-Copper Catalysts”, Langmuir, Vol.15, No.16, pp.5295-5302.
Fendler, J. H. and Meldrum, F. C. (1995) “The Colloid Chemical Approach to Nano Structured Materials”, Advanced Materials, Vol.7, No.7, pp.607-631.
Figueiredo, J. L., Bernardo, C. A., Baker, R. T. K. and Hüttinger, K. J. (1990) Carbon Fibers Filaments and Composites, Kluwer Academic Publishers, The Netherlands.
Fortuny, A., Bengoa, C., Font, J., Castells, F. and Fabregat, A. (1999) “Water Pollution Abatement by Catalytic Wet Air Oxidation in a Trickle Bed Reactor”, Catalysis Today, Vol.53, No.1, pp.107-114.
Forzatti, P., Ballardini, D. and Sighicelli, L. (2001) “Preparation and Characterization of Extruded Monolithic Ceramic Catalysts”, Catalysis Today, Vol.41, No.1-3, pp.87-94.
Forzatti, P. (2001) “Present Status and Perspectives in de-NOx SCR Catalysis”, Applied Catalysis A: General, Vol.222, No.1-2, pp.221-236.
Fraser, M. P. and Cass, G. R. (1998) “Detection of Excess Ammonia Emissions from in-use Vehicles and the Implications for Fine Particle Control”, Environmental Science & Technology, Vol. 32, No.8 pp.1053-1057.
Gallezot, P., Chaumet, S., Perrard, A. and Isnard, P. (1997) “Catalytic Wet Air Oxidation of Acetic Acid on Carbon-Supported Ruthenium Catalysts”, Journal of Catalysis, Vol.168, No.1, pp.104-109.
Gandhi, H. S. and Shelef, M. (1975) “Selectivity for Nitrogen Formation in NH3 Oxidation in Wet and Dry System over Mixed Molybdenum Oxides”, Journal of Catalysis, Vol.40, pp.312-317.
Gang, L., van Grondelle, J., Anderson, B. G. and van Santen, R. A. (1999) “Selectivity Low Temperature NH3 Oxidation to N2 on Copper-based Catalyst”, Journal of Catalysis, Vol.186, No.1, pp.100-109.
Gang, L., Anderson, B. G., van Grondelle, J. and van Santen, R. A. (2001) “NH3 Oxidation to Nitrogen and Water at Low Temperatures using Supported Transition Metal Catalysts”, Catalysis Today, Vol.61, No.1-4, pp.179-185.
Gang, L., Anderson, B. G., van Grondelle, J. and van Santen, R. A. (2001) “Intermediate Species and Reaction Pathways for the Oxidation of Ammonia on Powdered Catalysts”, Journal of Catalysis, Vol.199, No.1, pp.107-114.
Gang, L. (2002) “Catalytic Oxidation of Ammonia to Nitrogen”, Ph. D. Thesis, Laboratory of Inorganic Chemistry and Catalysis, Eindhoven University of Technology, Eindhoven, The Netherlands.
Gang, L., Anderson, B. G., van Grondelle, J. and van Santen, R. A. (2003) “Low Temperature Selective Oxidation of Ammonia to Nitrogen on Silver-based Catalysts”, Applied Catalysis B: Environmental, Vol.40, No.2, pp.101-110.
Garin, F. (2001) “Mechanism of NOx Decomposition”, Applied Catalysis A: General, Vol.222, No.1-2, pp.183-219.
Gervasini, A., Carniti, P. and Ragaini, V. (1999) “Studies of Direct Decomposition and Reduction of Nitrogen Oxide with Ethylene by Supported Noble Metal Catalysts”, Applied Catalysis B: Environmental, Vol.22, No.3, pp.201-213.
Geus, J. W. and van Giezen, J. C. (1999) “Monoliths in Catalytic Oxidation”, Catalysis Today, Vol.47, No.1-4, pp.169-180.
Golunski, S. E., Hatcher, H. A., Rajaram, R. R. and Truex, T. J. (1995) “Origins of Low-temperature Three-way Activity in Pt/CeO2”, Applied Catalysis B: Environmental, Vol.5, No.4, pp.367-376.
González-Velasco, J. R., Gutiérrez-Ortiz, M. A., Marc, J. L., Botas, J. A., González-Marcos, M. P. and Blanchard, G. (2003) “Pt/Ce0.68Zr0.32O2 Washcoated Monoliths for Automotive Emission Control”, Industry Engineering Chemistry Research, Vol.42, No.2, pp.311-317.
Goto, S., Levec, J. and Smith, J. M. (1977) “Trickle-Bed Oxidation Reactors”, Catal. Rev.-Sci. Eng., Vol.15, No.2, pp.187-247.
Goto, M., Shiramizu, D., Kodama, A. and Hirose, T. (1999) “Kinetic Analysis for Ammonia Decomposition in Supercritical Water Oxidation of Sewage Sludge”, Industry Engineering Chemistry Research, Vol.38, No.11, pp.4500-4503.
Groppi, G., Tronconi, E. and Forzatti, P. (1999) “Mathematical Models of Catalytic Combustors”, Catalysis Reviews-Sci. Eng., Vol.41, No.2, pp.227-254.
Grzybowska-Świerkosz, B. (2000) “Catalysis”, Annual Reports on the Progress of Chemistry, Section C, Vol.96, pp.297-334.
Greyson, J. (1990) Carbon, Nitrogen, and Sulfur Pollutants and Their Determination in Air and Water, Marcel Dekker, Inc., New York, USA.
Hadjiivanov, K. I. (2000) “Identification of Neutral and Charged NxOy Surface Species by IR Spectroscopy”, Catalysis Reviews-Sci. Eng., Vol.42, No.1-2, pp.71-144.
Hao, O. J., Phull, K. K. and Chen, J. A. (1994a) “Wet Oxidation of TNT Red Water and Bacterial Toxicity of Treated Waste”, Water Research, Vol.28, No.1, pp.283-290.
Hao, O. J. and Phull, K. K. (1994b) “Wet Air Oxidation of Hazardous Wastes”, Remediation of Hazardous Waste Contaminated Soils, Edition by Wise, D. L. and Trantolo, D. J., pp.849-868, Marcel Dekkar, New York, USA.
Harada, Y. (1987) “Q & A of Simultaneous, Single-Step Wastewater Treatment of Ammonia, COD, BOD, and Suspended Solids at High Concentrations Using the Catalytic Wet Oxidation Process-Advanced Treatment of Wastewater”, Osaka Gas Co., Ltd, Japan.
Harrison, P. G., Ball, I. K., Azelee, W., Daniell, W. and Goldfarb, D. (2000) “Nature and Structure Redox Properties of Copper(II)- Promoted Cerium(IV)Oxide CO-Oxidation Catalysts”, Chemistry of Materials, Vol.12, pp.3715-3725.
Hart, L. D. (1990) Alumina Chemicals: Science and Technology Handbook, The American Ceramic Society, Inc., Ohio, USA.
Hassler, J. W. (1974) Purification with Activated Carbon: Industrial Commercial Environmental, Chemical Publishing Co. Inc., New York, USA.
Hayes, R. E., Kolaczkowskib, S. T., Li, P. K. C. and Awdry, S. (2000) “Evaluating the Effective Diffusivity of Methane in the Washcoat of a Honeycomb Monolith”, Applied Catalysis B: Environmental, Vol.25, No.2-3, pp.93-104.
Heck, R. M. and Farrauto, R. J. (1995) Catalytic Air Pollution Control-Commercial Technologyl, International Thomson Publishing Inc., New York, USA.
Hedström, A. (2001) “Ion Exchange of Ammoia in Zeolites:A Literature Review”, Journal of Environmental Engineering, Vol.127, No.8, pp.673-681.
Heggemann, M. H., Warnecke, H. and Viljoen, H. J. (2001) “Removal of Ammonia from Aqueous Systems in a Reactor”, Industry Engineering Chemistry Research, Vol.40, No.15, pp.3361-3368.
Helling, R. K. and Tester, J. W. (1988) “Oxidation of Simple Compounds and Mixtures in Supercritical Water-Carbon Monoxide, Ammonia and Ethanol”, Environmental Science & Technology, Vol. 22, No.11, pp.1319-1324.
Helminen, J., Helenius, J. and Paatero, E. (2002) “Adsorption Equilibria of Ammonia Gas on Inorganic and Organic Sorbents at 298.15 K”, Journal of Chemical and Engineering Data, Vol.46, No.2, pp.391-399.
Heras, J. M. and Viscido, L. (1988) “The Behavior of Water on Metal Surfaces”, Catalysis Reviews-Sci. Eng., Vol.30, No.2, pp.281-338.
His, H. C., Rood, M. J., Rostam-Abadi, M., Chen, S. and Chang, R. (2001) “Effects of Sulfur Impregnation Temperature on the Properties and Mercury Adsorption Capacities of Activated Carbon Fibers (ACFs)”, Environmental Science & Technology, Vol. 35, No.13, pp.2785-2791.
Hu, Y., Dong, L., Shen, M., Liu, D., Wang, J., Ding, W. and Chen, Y. (2001) “Influence of Supports on the Activities of Copper Oxide Species in the Low-temperature NO+CO Reaction”, Applied Catalysis B: Environmental, Vol.31, No.1, pp.61-69.
Hu, Z., Wan, C. Z., Lui, Y. K., Dettling, J. and Steger, J. J. (1996) “Design of a Novel Pd Three-way Catalyst: Integration of Catalytic Functions in Three Dimensions”, Catalysis Today, Vol.30, No.1-3, pp.83-89.
Huang, H. H., Yan, F. Q., Kek, Y. M., Chew, C. H., Xu, G. Q., Ji, W., Oh, P. S. and Tang, S. H. (1997) “Synthesis, Characterization, and Nonlinear Optical Properties of Copper Nanoparticles”, Langmuir, Vol.13, No.2, pp.172-175.
Huang, T. (1999) “The Removal of Ammonia and Phenol by Hydrophobic Catalyst”, Ph. D. Thesis, Department of Chemical and Process Engineering, The University of Sheffield, Sheffield, UK.
Huang, T., Cliffe, K. and Macinnes, J. M. (2000) “The Removal of Ammonia from Water by a Hydrophobic Catalyst”, Environmental Science & Technology, Vol.34, No.22, pp.4804-4809.
Huang, T., Macinnes, J. M. and Cliffe, K. (2001) “Nitrogen Removal from Wastewater by a Catalytic Oxidation Method”, Water Research, Vol.35, No.9, pp.2113-2120.
Huang, T. J., Lee, K. C., Yang, H. W. and Dow, W. P. (1998) “Effect of Chromium Addition on Supported Copper Catalysts for Carbon Monoxide Oxidation”, Applied Catalysis A: General, Vol.174, No.1-2, pp.199-206.
Huang, Y. J. (1999a) “NO Reduction Catalysis and Catalysis Studied by X-ray Absorption Spectroscopy”, Ph. D. Thesis, Department of Environmental Engineering, National Cheng Kung University, Taiwan.
Huang, Y. J., Wang, H. P., Yeh, C. T. and Peng, C. Y. (1999b) “Enhanced Decomposition of NO on the Alkalized PdO/ Al2O3 Catalyst”, Chemosphere, Vol.39, No.13, pp.2279-2284.
Huang, Y. J., Wang, H. P. and Lee, J .F. (2003) “Catalytic Reduction of NO on Copper/MCM-41 Studied by in Situ EXAFS and XANES ”, Chemosphere, Vol.39, No.50, pp.1035-1041.
Ichinose, N., Ozaki, Y. and Kashu, S. (1988) Superfine Particle Technology, pp.201-203, Springer-Verlag, New York, USA.
Ilchenko, N. I. And Golodets (1975) “Catalytic Oxidation of Ammonia”, Journal of Catalysis, Vol.39, pp.57-72.
Imamura, S. and Akira, D. (1985) “Wet Oxidation of Ammonia Catalyzed by Cerium Based Composite Oxides”, Ind. Eng. Chem. Prod. Res. Dev., Vol.24, No.1, pp.75-80.
Imamura, S., Nakamura, M., Kawabata, N. and Yoshida, J. I. (1986) “Catalytic and Noncatalytic Wet Oxidation”, Industry Engineering Chemistry Research, Vol.25, pp.34-39.
Imamura, S. (1999) “Catalytic and Noncatalytic Wet Oxidation”, Industry Engineering Chemistry Research, Vol.38, No.5, pp.1743-1753.
Imelik, B., Naccache, C., Coudurier, G., Praliaud, H., Meriaudeau, P., Gallezot, P., Martin, G. A. and Vedrine, J. C. (1982) Metal-Support and Metal-Additive Effects in Catalysis, Elsevier Scientific Publishing Company Inc., Amsterdam, The Netherlands.
Inomata, M., Mori, K., Miyamoto, A., Ui, T. and Murakaml, Y. (1983) “Structures of Supported Vanadium Oxide Catalysts. 1.V2O5/TiO2 (Anatase), V2O5/TiO2 (Rutile), and V2O5/TiO2 (Mixture of Anatase with Rutile)”, Journal of Physical Chemistry, Vol.87, pp.754-781.
Inoue, H., Komiyama, H., Tanaka, H., Tamura, N., Matsuo, M., Morishita, T. and Miyazawa, J. (1986) “Treatment of Pollutants in Waste Water by Catalytic Wet Oxidation”, in Proceedings of the World Congress III of Chemical Engineering on Chemical and Physico-Chemical Wastewater Treatment, p.596, Tokyo, Japan.
Irandoust, S. and Andersson, B. (1988) “Monolithic Catalysts for Nonautomobile Application”, Catalysis Reviews-Sci. Eng., Vol.30, No.3, pp.341-392.
Ismagilov, Z. R. and Kerzhentsev, M. A. (1990) “Catalytic Fuel Combustion-a Way of Reducing Emission of Nitrogen Oxides”, Catalysis Reviews-Sci. Eng., Vol.32, No.1-2, pp.51-103.
Ismagilov, Z. R., Shkrabina, R. A., Barannik, G. B. and Kerzhentsev, M. A.(1995)“New Catalysts and Processes for Environment Protection”, Reaction Kinetics and Catalysis Letters, Vol.55, No.2, pp.489-499.
Ismagilov, Z. R., Khairulin, S. R., Shkrabina, R. A., Yashnik, S. A. Ushakov, V. A., Moulijn, J. A. and Langeveld, A. D. V. (2001) “Deactivation of Manganese Oxide-based Honeycomb Monolith Catalyst under Reaction Conditions of Ammonia Decomposition at High Temperature”, Catalysis Today, Vol.69, No.1-4, pp.253-257.
Iwamoto, M., Zengyo, T., Hernandez, A.M. and Araki, H. (1998) “Intermediate Addition of Reductant Between an Oxidation and a Reduction Catalyst for Highly Selective Reduction of NO in Excess Oxygen”, Applied Catalysis B: Environmental, Vol.17, No.3, pp.259-266.
Iwamoto, S., Saito, K. and Inoue, M. (2001) “Preparation of the Xerogels of Nanocrystalline Titanias by the Removal of the Glycol at the Reaction Temperature after the Glycothermal Method and Their Enhanced Photocatalytic Activities”, Nano Letters, Vol.1, No.8, pp.417-421.
Iwayama, K. and Wang, X. (1998) “Selective Decomposition of Nitrogen Monoxide to Nitrogen in the Presence of Oxygen on RuO2/Ag (cathode)/Yttria-stabilized Zirconia/Pd (anode)”, Applied Catalysis B: Environmental, Vol.19, No.2, pp.137-142.
Jarrah, N., van Ommen, J. G. and Lefferts, L. (2003) “Development of Monolith with a Carbon-Nanofiber-Washcoat as a Structured Catalyst Support in Liquid Phase”, Catalysis Today, Vol.79-80, pp.29-33.
Jiang, X., Herricks, T. and Xia, Y. (2002) “CuO Nanowires Can Be Synthesized by Heating Copper Substrates in Air”, Nano Letters, Vol.2, No.12, pp.1333-1338.
Jen, H. W. (1998) “Study of Nitric Oxide Reduction over Silver/alumina Catalysts under Lean Conditions: Effects of Reaction Conditions and Support”, Catalysis Today, Vol.42, No.1-2, pp.37-44.
Jong, K. P. D. and Geus, J. W. (2000) “Carbon Nanofibers: Catalytic Synthesis and Applications”, Catalysis Reviews-Sci. Eng., Vol.42, No.4, pp.481-510.
José-Yacamán, M. and Avalos-Borja, M. (1992) “Electron Microscopy of Metallic Nano Particles Using High- and Medium-resolution Techniques”, Catalysis Reviews-Sci. Eng., Vol.34, No.1-2, pp.55-127.
Kapoor, A. and Viraraghavan, T. (1997) “Nitrate Removal from Drinking Water - Review”, Journal of Environmental Engineering, Vol.123, No.4, pp.371-380.
Kaopper, S., Joshi, R. and Mukherjee, T. (2002) “Influence of I- Anions on the Formation and Stabilization of Copper Nanoparticles”, Chemical Physics Letters, Vol.354, No.5-6, pp.443-448.
Kašpar, J., Fornasiero, P. and Graziani, M. (1999) “Use of CeO2-based Oxides in the Three-way Catalysis”, Catalysis Today, Vol.50, No.2, pp.285-298.
Kašpar, J., Fornasiero, P. and Hickey, N. (2003) “Automotive Catalytic Converts: Current Status and Some Perspectives”, Catalysis Today, Vol.77, No.4, pp.419-449.
Kato, A., Matsuda, S., Najajima, F., Imanari, M. and Watanabe, Y. (1981) “Reduction of Nitric Oxide Ammonia on Iron Oxide-Titanium Oxide Catalyst”, Journal of Physical Chemistry, Vol.85, pp.1710-1713.
Killilea, W. R., Swallow, K. C. and Hong, G. T. (1992) “The Fate of Nitrogen in Supercritical Water Oxidation”, The Journal of Supercritical Fluids, Vol.5, pp.72-78.
Kim, N., Hirai, M. and Shoda, M. (2000) “Comparsion of Organic and inorganic Packing Materials in the Removal of Ammonia Gas in Biofilters”, Journal of Hazardous Materials, Vol.B72, No.1, pp.77-90.
Kirchnerova, J. and Klvana, D. (1999) “Synthesis and Characterization of Perovskite Catalysts”, Solid State Ionics, Vol.123, No.1-4, pp.307-317.
Kleemann, M., Elsener, M., Koebel, M. and Wokaun, A. (2000) “Investigation of the Ammonia Adsorption on Monolithic SCR Catalysts by Transient Response Analysis”, Applied Catalysis B:Environmental, Vol.27, No.4, pp.231-242.
Ko, T. H. (1991) “Effects of the Properties of PAN-based Carbon Fibers during Air Oxidation ”, SAMPE Quarterly, Vol.22, pp.13-18.
Kodas, T. T. and Hampden-Smith, M. J. (1999) Aerosol Processing of Materials, Wiley-VCH, New York, USA.
Kolaczkowski, S. T., Plucinski, P., Beltran, F. J., Rivas, F. J. and Mclurgh, D. B. (1999) “Wet Air Oxidation: a Review of Process Technologies and Aspects in Reactor Design”, Chemical Engineering Journal, Vol.73, No.2, pp.143-160.
Kondarides, D. I. and Verykios, X. E. (1998) “Effect of Chlorine on the Chemisorptive Properties of Rh/CeO2 Catalysts Studied by XPS and Temperature Programmed Desorption Techniques”, Journal of Catalysis, Vol.174, No.1, pp.52-64.
Kosaki, Y., Miyamoto, A. and Murakami, Y. (1979) “Oxidation of Ammonia with Lattice Oxygen of Metal Oxide by Pulse Reaction Technique”, Bulletin of the Chemical Society Japan, Vol.52, pp.617-618.
Kosaki, Y., Miyamoto, A. and Murakami, Y. (1982) “Bifunctional Oxidation of Ammonia with Metal Oxide Pt/Al2O3 Mechanical Mixtures”, Bulletin of the Chemical Society Japan, Vol.55, pp.63-68.
Kozub, P. A., Trusov, N. V., Gryn, G. I. And Prezhdo, V. V. (2001) “Investigation of the Operation Time Dependence of the Yield of Ammonia Conversion to Nitrogen (II) Oxide by Platinum Catalyst Sets”, Journal of Chemical Technology and Biotechnology, Vol.76, No.2, pp.147-152.
Krupa, S. V. (2003) “Effects of Atmospheric Ammonia (NH3) on Terrestrial Vegetation: a Review”, Environmental Pollution, Vol.124, No.2, pp.179-221.
Kubo, R. (1962) J. Phys. Soc. Japan, Vol.17, p.975.
Kulkarni, G. U., Rao, C. N. R. and Roberts, M. W. (1995) “Nature of the Oxygen Species at Ni (110) and Ni (110) Surfaces Revealed by Exposure to Oxygen and Oxygen-Ammonia Mixtures: Evidence for the Surface Reactivity of O-Type Species”, Journal of Physical Chemistry, Vol.99, No.10, pp.3310-3316.
Kumthekar, M. W. and Ozkan, U. S. (1997) “Nitric Oxide Reduction with Methane over Pd/TiO2 Catalysts I: Effect of Oxygen Concentration”, Journal of Catalysis, Vol.171, No.1, pp.45-53.
Kundakovic, L. and Flytzani-Stephanopoulos, M. (1998) “Reduction Characteristics of Copper oxide in Cerium and Zirconium Oxide Systems”, Applied Catalysis A: General, Vol.171, No.1, pp.13-29.
Kung, M. C. and Hung, H. H. (1985) “IR Studies of NH3, Pyridine, CO, and NO Adsorbed on Transition Metal Oxides”, Catalysis Reviews-Sci. Eng., Vol.27, No.3, pp.425-460.
Kuo, W. S., Ko, T. H. and Lo, T. S. (2002) “Failure Behavior of Three-axis Woven Carbon/carbon Composites under Compressive and Transverse Shear Loads”, Composites Science and Technology, Vol.62, No.7-8, pp.989-999.
Lachman, I. M. (1990) “Monolithic Catalyst Systems”, pp.283-288 in Alumina Chemicals: Science and Technology Handbook. Edited by L. D. Hart. The American Ceramic Society, Inc, Ohio.
Lee, B. N. (2001) “Study on Catalytic Wet Air Oxidation of Ferrocyanide or 2,4-Dichlorophenol Solutions”, Ph. D. Thesis, Institute of Environmental Engineering, National Sun Yat-Sen University, Kaohsiung, Taiwan.
Lee, B. N., Lou, J. C. and Yen, P. C. (2002) “Catalytic Wet Oxidation of 2,4-Dichlorophenol Solutions: Activity of the Manganese-Cerium Composite Catalyst and Biodegradability of the Effluent Stream”, Water Environment Research, Vol.74, No.1, pp.28-32.
Lee, J. Y., Kim, S. B. and Hong, S. C. (2003) “Characterization and Reactivity of Natural Manganese Ore Catalytic Oxidation of Ammonia to Nitrogen”, Chemosphere, Vol.50, pp.1115-1122.
Lee, M. R., Allen, E. R., Wolan, J. T. and Hoflund, G. B. (1998) “NO2 and NO Adsorption Properties of KOH-treated γ-Alumina”, Industry Engineering Chemistry Research, Vol.37, No.8, pp.3375-3381.
Lee, Y. W., Choi, D. K. and Park, J. W. (2001) “Surface Chemical Characterization Using AES/SAM and TOF-SIMS on KOH-Impregnated Activated Carbon by Selective Adsorption of NOx”, Industry Engineering Chemistry Research, Vol.40, No.15, pp.3337-3345.
Lee, Y. W., Park, J. W., Choung, J. H., Lee, J. H. and Choi, D. K. (2002) “Adsorption Characteristics of SO2 on Activated Carbon Prepared from Coconut Shell with Potassium Hydroxide Activation”, Environmental Science & Technology, Vol.36, No.5, pp.1086-1092.
Lee, Y. W., Park, J. W., Yun, J. H., Lee, J. H. and Choi, D. K. (2002) “Studies on the Surface Chemistry Based on Competitive Adsorption of NOx-SO2 onto a KOH Impregnated Activated Carbon in Excess O2”, Environmental Science & Technology, Vol.36, No.22, pp.4928-4935.
Lee, Y. W., Choi, D. K. and Park, J. W. (2002) “Performance of Fixed-bed KOH Impregnated Activated Carbon Adsorber for NO and NO2 Removal in the Presence of Oxygen”, Carbon, Vol.40, No.9, pp.1409-1417.
Lemcoff, N. O., Cukierman, A. L. and Martínez, O. M. (1988) “Effectiveness Factor of Partially Wetted Catalyst Particles: Evaluation and Application to the Modeling of Trickle Bed Reactors”, Catal. Rev.-Sci. Eng., Vol.30, No.3, pp.393-456.
Levec, J. and Pintar, A. (1995) “Catalytic Oxidation of Aqueous Solutions of Organics: an Effective Method for Removal of Toxic Pollutions from Waste Waters”, Catalysis Today, Vol.24, No.1-2, pp.51-58.
Levenspiel, O. (1999) Chemical Reaction Engineering, pp. 38-75, John Wiley & Sons., New York, USA.
Lewis, W. M. and Saunders, J. F. (1995) “Improvements in Stream Ammonia Models by Simultaneous Computation of Extremes in Flow and Water Chemistry”, Environmental Science & Technology, Vol.29, No.7, pp.1796-1801.
Li, C. H., Yao, K. F. and Liang, J. (2003) “Influence of acid Treatments on the Activity of Carbon Nanotube-supported Catalysts”, Carbon, Vol.41, pp.858-860.
Li, L., Chen, P. and Gloyna, E. F. (1991) “Generalized Kinetics Model for Wet Air Oxidation”, AIChE J., Vol.37, pp.1687-1692.
Li, Y. G., Xie, W. H. and Yong, S. (1997) “The Acidity and Catalytic Behavior of Mg-ZSM-5 Prepared via a Solid-state Reaction”, Applied Catalysis A: General, Vol.150, No.2, pp.231-242.
Li, Z. and Flytzani-Stephanopoulos, M. (1997) “Selective Catalytic Reduction of Nitric Oxide by Methane over Cerium and Silver Ion-exchanged ZSM-5 Zeolites”, Applied Catalysis A: General, Vol.165, No.1-2, pp.15-34.
Li, Z. and Flytzani-Stephanopoulos, M. (1999a) “On the Promotion of Ag-ZSM-5 by Cerium for the SCR of NO by Methane”, Journal of Catalysis, Vol.182, No.2, pp.313-327.
Li, Z. and Flytzani-Stephanopoulos, M. (1999b) “Effects of Water Vapor and Sulfur Dioxide on the Performance of Ce-Ag-ZSM-5 for the SCR of NO with CH4”, Applied Catalysis B:Environmental, Vol.22, No.1, pp.35-47.
Liang, C., Li, W., Xin, Q. and Li, C. (2000) “Catalytic Decomposition of Ammonia over Nitrided MoNx/α-Al2O3 and NiMoNy/α-Al2O3 Catalysts”, Industry Engineering Chemistry Research, Vol.39, No.10, pp.3694-3697.
Lien, H. L. (2000) “Nanoscale Bimetallic Particles for Dehalogenation of Halogenated Aliphatic Compounds”, Ph. D. Thesis, Department of Civic and Environmental Engineering, The University of Lehigh, Bethlehem, Pennsylvania, USA.
Lien, H. L. and Wilkin, R. (2002) “Reductive Activation of Dioxygen for Degradation of Methyl tert-Butyl Ether by Bifunctional Aluminum”, Environmental Science & Technology, Vol.36, No.20, pp.4436-4440.
Lietti, L., Ramis, G., Busca, G., Bregani, F. and Forzatti, P. (2000) “Characterization and Reactivity of MoO3/SiO2 Catalysts in the Selective Catalytic Oxidation of Ammonia to N2”, Catalysis Today, Vol.61, No.1-4, pp.187-195.
Lietz, G., Spindler, H. and Lieske, H. (1987) “Role of Metallic and Oxidic Platinum in the Catalytic Combustion of n-Heptane”, Journal of Catalysis, Vol.104, No.2, pp.375-380.
Lillo-Ródenas, M. A., Cazorla-Amorós, D. and Linares-Solano, A. (2003) “Understanding Chemical Reactions between Carbons and NaOH and KOH-An Insight into the Chemical Activation Mechanism”, Carbon, Vol.41, No.2, pp.267-275.
Lin, J. H. (1999) “The Study of Surface Properties and Catalytic Behavior of Carbonaceous Materials”, Ph. D. Thesis, Department of Chemistry, National Sun Yat-Sen University, Kaohsiung, Taiwan.
Lin, K. S. (1998) “Catalytic Oxidation of 2-Chlorophenol in Supercritical”, Ph. D. Thesis, Department of Environmental Engineering, National Cheng Kung University, Tainan, Taiwan.
Lin, S. H. and Wu, C. L. (1996a) “Removal of Nitrogenous Compounds from Aqueous Solution by Ozonation and Ion Exchange”, Water Research, Vol.30, No.8, pp.1851-1857.
Lin, S. H. and Wu, C. L. (1996b) “Electrochemical Removal of Nitrite and Ammonia for Aquaculture”, Water Research, Vol.30, No.3, pp.715-721.
Lin, S. H., Ho, S. J. and Wu, C. L. (1996c) “Kinetic and Performance Characteristics of Wet Oxidation of High-concentration Wastewater”, Industry Engineering Chemistry Research, Vol.35, No.1, pp.307-314.
Lin, W. H., Hwang, C. Y. and Chang, H. F. (1997) “A New Approach to the Preatment of Electroless Plated Cu/Al2O3 Catalysts”, Applied Catalysis A: General, Vol.162, No.1-2, pp.71-79.
Long, R. Q. and Yang, R. T. (2000) “Superior Ion-exchanged ZSM-5 Catalysts for Selective Catalytic Oxidation of Ammonia to Nitrogen”, Chemical Communications, Vol.17, pp.1651-1652.
Lordgooei, M., Sagen, J., Rood, M. J. and Rostam-Abadi, M. (1998) “Sorption and Modeling of Mass Transfer of Toxic Chemical Vapors in Activated-carbon Fiber-cloth Adsorbers”, Energy & Fuel, Vol.12, No.6, pp.1079-1088.
Lordgooei, M., Rood, M. J. and Rostam-Abadi, M. (2001) “Modeling Effective Diffusivity of Volatile Organic Compounds in Activated Carbon Fiber”, Environmental Science & Technology, Vol. 35, No.3, pp.613-619.
Lu, Z., Liu, G., Philips, H., Hill, J. M., Chang, J. and Kydd, R. A. (2001) “Palladium Nanoparticle Catalyst Prepared in Poly (Acrylic Acid)-lined Channels of Diblock Copolymer Microsphere”, Nano Letters, Vol.1, No.12, pp.683-687.
Luck, F. (1996) “A Review of Industrial Catalytic Wet Air Oxidation Processes”, Catalysis Today, Vol.27, No.1-2, pp.195-202.
Luck, F. (1999) “Wet Air Oxidation: Past, Present and Future”, Catalysis Today, Vol.53, No.1, pp.81-91.
Luk, G. K. and Au-Yeung, W. C. (2002) “Experimental Investigation on the Chemical Reduction of Nitrate from Groundwater”, Advances in Environmental Research, Vol.6, No.4, pp.441-453.
Lyubovsky, M., Pfefferle, L., Datye, A., Bravo, J. and Nelson, T. (1999) “TEM Study of the Microstructural Modifications of an Alumina-Supported Palladium Combustion Catalyst”, Journal of Catalysis, Vol.187, No.2, pp.275-284.
Maicaneanu, S. A., Sayle, D. C. and Watson, G. W. (2001) “Structural Characterization of the CeO2/YSZ (111) Catalytic System Synthesized using Simulated Amorphization and Recrystallization”, The Journal of Physical Chemistry B, Vol.105, No.50, pp.12481-12489.
Maillet, T., Barbier Jr., J., Duprez, D. (1996) “Reactivity of Steam in Exhaust Gas Catalysis III. Steam and Oxygen/steam Conversions of Propane on a Pd/Al2O3 Catalyst”, Applied Catalysis B: Environmental, Vol.9, No.1-4, pp.251-266.
Mangun, C. L., Braatz, R. D., Ecoomy, J. and Hall, A. J. (1999) “Fixed Bed Adsorption of Acetone and Ammonia onto Oxidized Activated Carbon Fibers” Industry Engineering Chemistry Research, Vol.38, No.9, pp.3499-3504.
Manning, M. P. (1984) “Fluid Bed Catalytic Oxidation: An Underdeveloped Hazardous Waste Disposal Technology”, Hazardous Waste, Vol.1, No.1, pp.41-49.
Mantzavinos, D., Sahibzada, M., Livingston, A. G., Metcalfe, I. S. and Hellgardt, K. (1999) “Wastewater Treatment: Wet Air Oxidation as a Precursor to Biological Treatment”, Catalysis Today, Vol.53, No.1, pp.93-106.
Marbán, G. and Fuertes, A. B. (2001a) “Low-temperature SCR of NOx with NH3 over NomexTM Rejects-based Activated Carbon Fibre Composite-supported Manganese Oxides. Part I. Effect of Pre-conditioning of the Carbonaceous Support”, Applied Catalysis B: Environmental, Vol.34, No.1, pp.43-53.
Marbán, G. and Fuertes, A. B. (2001b) “Low-temperature SCR of NOx with NH3 over NomexTM Rejects-based Activated Carbon Fibre Composite-supported Manganese Oxides. Part II. Effect of Procedures for Impregnation and Active Phase Formation”, Applied Catalysis B: Environmental, Vol.34, No.1, pp.43-53.
Martínez-Arias, A., Cataluña, R., Conesa, J. C. and Soria, J. (1998) “Effect of Copper-Ceria Interactions on Copper Reduction in a Cu/CeO2/Al2O3 Catalyst Subjected to Thermal Treatments in CO”, The Journal of Physical Chemistry B, Vol.102, No.5, pp.809-817.
Martínez-Arias, A., Fernández-García, M., Salamanca, L. N., Valenzuela, R. X., Conesa, J. C. and Soria, J. (2000) “Structural and Redox Properties of Ceria in Alumina-supported Ceria Catalyst Supports”, The Journal of Physical Chemistry B, Vol.104, No.17, pp.4038-4046.
Márquez-Alvarez, C., Rodríguez-Ramos, I., Guerrero-Ruiz, A., Haller, G. L. and Fernández-García (1997) “Selective Reduction of NOx with Propene under Oxidative Condition: Nature of the Active Sites on Copper-Based Catalysts”, Journal of American Chemical Society, Vol.119, pp.2905-2914.
Masel, R. I. (1986) “An Experimental Test of Various Models of the Active Site for Nitric Oxide Reduction on Platinum”, Catalysis Reviews-Sci. Eng., Vol.28, No.2-3, pp.335-369.
Matatov-Meytal, Y. I. and Sheintuch, M. (1998) “Catalytic Abatement of Water Pollutants”, Industry Engineering Chemistry Research, Vol.37, No.2, pp.309-326.
Mattson, J. S. and Harry, B. M. J. (1971) Activated Carbon-Surface Chemistry and Adsorption from Solution, Marcel Dekker, Inc., New York, USA.
Matyi, R. J., Schwartz, L. H. and Butt, J. B. (1987) “Particle Size, Particle Size Distribution, and Related Measurements of Supported Metal Catalysts”, Catalysis Reviews-Sci. Eng., Vol.29, No.1, pp.41-99.
Maugans, C. B. and Akgerman, A. (2003) “Catalytic Wet Oxidation of Phenol in a Trickle Bed Reactor over a Pt/TiO2 Catalyst”, Water Research, Vol.37, No.2, pp.319-328.
McGuire, M. J. and Suffer, I. H. (1983) Treatment of Water by Granular Activated Carbon, American Chemical Society, Washington, D. C., USA.
Mearns, A. M. and Ofosu-Asiedu, K. (1984a) “Kinetics of Reaction of Low Concentration Mixtures of Oxides of Nitrogen, Ammonia and Water Vapor”, Journal of Chemical Technology Biotechnology, Vol.34A, pp.341-349.
Mearns, A. M. and Ofosu-Asiedu, K. (1984b) “Ammonia Nitrate Formation in Low Concentration Mixtures of Oxides of Nitrogen and Ammonia”, Journal of Chemical Technology Biotechnology, Vol.34A, pp.350-354.
Medina-Valtierra, J., Ramírez-Ortiz, J., Arroyo-Rojas, V. M. and Ruiz, F. (2003) “Cyclohexane Oxidation over Cu2O-CuO and CuO Thin Films Deposited by CVD Process on Fiberglass”, Applied Catalysis A:General, Vol.238, No.1, pp.1-9.
Mellor, J. R., Coville, N. J., Sofianos, A. C. and Copperthwaite, R. G. (1997) “Raney Copper Catalysts for the Water-gas Shift Reaction: I. Preparation, Activity and Stability”, Applied Catalysis A:General, Vol.164, No.1-2, pp.171-183.
Metcalf and Eddy (2003) Wastewater Engineering: Treatment and Disposal Reuse, 4nd ed., McGRAW-Hill, New York, USA.
Miller, D. N. (1987) “Mass Transfer in Nitric Acid Absorption”, AICHE Journal, Vol.33, No.8, pp.1351-1358.
Minero, C., Pelizzatti, E., Pichat, P., Sega, M. and Vincenti, M (1995) “Formation of Condensation Products in Advaced Oxidation Technologies: The Photocatalytic Degradation of Dichlorophenols on TiO2”, Environmental Science & Technology, Vol.29, No.9, pp.2226-2234.
Mishra, V. S., Mahajani, V. V. and Joshi, J. B. (1995) “Wet Air Oxidztion”, Industry Engineering Chemistry Research, Vol.34, No.1, pp.2-48.
Miura, K., Nakagawa, H. and Okamoto, H. (2000) “Production of High Density Activated Carbon Fiber by a Hot Briquetting Method”, Carbon, Vol.38, No.1, pp.119-125.
Mizuno, N. and Misono, M. (1998) “Heterogeneous Catalysis”, Chemical Reviews, Vol.98, No.1, pp.199-217.
Mnyusiwalla, A., Daar, A.S. and Singer, P. A. (2003) “‘Mind the Gap’: Science and Ethics in Nanotechnology”, Nanotechnology, Vol.14, No.3, pp.R9-R13.
Mochida, I., Kawano, S., Hironaka, M., Kawabuchi, Y., Korai, Y., Matsumura, Y. and Yoshikawa, M. (1997) “Kinetic Study on Reduction of NO of Low Concentration in Air with NH3 at Room Temperature over Pitch-based Active Carbon Fibers of Moderate Surface Area”, Langmuir, Vol.13, No.20, pp.5316-5321.
Mochida, I., Korai, Y., Shirahama, M., Kawano, S., Hada, T., Seo, Y., Yoshikawa, M. and Yasutake, A. (2000) “Removal of SOx and NOx over Activated Carbon Fibers”, Carbon, Vol.38, No.1, pp.227-239.
Mogyoroósi, K., Dékány, I. And Fendler, J. H. (2003) “Preparation and Characterization of Clay Mineral Intercalated Titanium Dioxide Nanoparticles”, Langmuir, Vol.19, No.7, pp.2938-2946.
Moojtahedi, W., Ylitalo, M., Maunula, T. and Abbasian, J. (1995) “Catalytic Decomposition of Ammonia in Fuel Gas Produced in Pilot-scale Pressured Fluidized-bed Gasifier”, Fuel Processing Technology, Vol.45, No.3, pp.221-236.
Moreno-Castilla, C., Carrasco-Marín, F., Maldonado-Hódar, F. J. and Rivera-Utrilla, J. (1998) “Effects of Non-oxidant and Oxidant Acid Treatments of the Surface Properties of an Activated Carbon with Very Low Ash Content”, Carbon, Vol.36, No.1-2, pp.145-151.
Moretti, G., Dossi, C., Fusi, A., Recchia, S. and Psaro, R. (1999) “A Comparsion Between Cu-ZSM-5, Cu-S-1 and Cu-Mesoporous-Silica-Alumina as Catalysts for NO Decomposition”, Applied Catalysis B: Environmental, Vol.20, No.1, pp.67-73.
Muenter, A. H. and Koehlter, B. G. (2000) “Adsorption of Ammonia on Soot at Low Temperatures”, The Journal of Physical Chemistry A, Vol.104, No.37, pp.8527-8534.
Müller, C. A., Maciejewski, M., Koeppel, R. A. and Baiker, A. (1999) “Combustion of Methane over Palladium/Zirconia: Effect of Pd-particle size and Role of Lattice Oxygen”, Catalysis Today, Vol.47, No.1-4, pp.245-252.
Muraki, H. and Zhang, G. (2000) “Design of Advanced Automotive Exhaust Catalysts”, Catalysis Today, Vol.63, No.2-4, pp.337-345.
Murphy, A. P. (1991) “Chemical Removal of Nitrate from Water”, Nature, Vol.350, pp.223-225.
Nakatsuji, T., Ruotoistenmäki, J., Komppa, V., Tanaka, Y. and Uekusa, T. (2002) “A Catalytic NO Reduction in Periodic Lean and Rich Excursions over Rh Supported on Oxygen Storage Capacity Materials, Applied Catalysis B:Environmental, Vol. 38, No.2, pp.101-116.
Narui, K., Yata, H., Furuta, K., Nishida, A., Kohtoku, Y. and Matsuzaki, T. (1999) “Effects of Addition of Pt to PdO/Al2O3 Catalyst on Catalytic Activity for Methane Combustion and TEM Observations of Supported Particles”, Applied Catalysis A:General, Vol. 179, No.1-2, pp. 165-173.
National Science and Technology Council’s Committee on Technology (NSTC), Subcommittee on Nanoscale Science, Engineering and Technology (NSET) (2000) National Nanotechnology Initiative (NNI): The Initiative and Its Implementation Plan, pp.1-142, Washington, D. C., USA.
Neyestanaki, A.K. and Lindfors, K.L.E. (1995) “Catalytic Combustion of Propane and Natural Gas over Cu and Pd Modified ZSM Zeolite Catalysts”, Applied Catalysis B: Environmental, Vol.7, No.1, pp.95-111.
Nielsen, A. (1970) “Review of Ammonia Catalysis”, Catalysis Reviews, Vol.4, No.1, pp.1-26.
Nilsen, O., Kjekshus, A. and Fjellvag, H. (2001) “Reconstruction and Loss of Platinum Catalyst during Oxidation of Ammonia”, Applied Catalysis A: General, Vol.207, No.1-2, pp.43-54.
Ning, W., Shen, H. and Liu, H. (2001) “Study of the Effect of Preparation Method on CuO-ZnO-Al2O3 Catalyst”, Applied Catalysis A: General, Vol.211, No.4, pp.153-157.
Noh, J. S. and Schwarz, J. A. (1990) “Effects of HNO3 Treatment on the Surface Acidity of Activated Carbons”, Carbon, Vol.28, No.5, pp.675-682.
Nunan, J. G., Robota, H. J., Cohn, M. J. and Bradley, S. A. (1992) “Physicochemical Properties of Ce-containing Three-way Catalysts and the Effect of Ce on Catalyst Activity”, Journal of Catalysis, Vol.133, No.2, pp.309-324.
Nyquist, R. A. and Kagel, R. O. (1971) Infrared Spectra of Inorganic Compounds, Academic Press, California.
Odenbrand, C. U. I., Bahamonde, A., Avila, P. and Blanco, J. (1994) “Kinetic Study of the Selective Reduction of Nitric Oxide over Vanadia-tungsta-titania/sepiolite Catalyst”, Applied Catalysis B: Environmental, Vol.5, No.1-2, pp.117-131.
Oliviero, L., Jr, J .B. and Duprez, D. (2003) “Wet Air Oxidation of Nitrogen-containing Organic Compounds and Ammonia in Aqueous Media”, Applied Catalysis B: Environmental, Vol.40, No.3, pp.163-184.
Ortiz-Hernandez, I. and Williams, C. T. (2003) “In Situ Investigation of Solid-liquid Catalytic Interfaces by Attenuated Total Reflection Infrared Spectroscopy”, Langmuir, Vol.19, No.7, pp.2596-2962.
Papapolymerou, G. and Bontozoglou, V. (1997) “Decomposition of NH3 on Pd and Ir Comparsion with Pt and Rh”, Journal of Molecular Catalysis A: Chemical, Vol.120, No.2, pp.165-171.
Parravano, G. (1970) “Equilibrium Oxygen Transfer at Metal Oxide Surfaces”, Catalysis Reviews-Sci. Eng., Vol.4, No.1, pp.53-76.
Pârvulescu, V. I., Oelker, P., Grange, P. and Delmon, B. (1998) “NO Decomposition over Bicomponent Cu-Sm-ZSM-5 Zeolites”, Applied Catalysis B: Environmental, Vol.16, No.1, pp.1-17.
Péna, M. A. and Fierro, J. L. (2001) “Chemical Structures and Performance of Perovskite Oxides”, Chemical Reviews, Vol.101, No.7, pp.1981-2017.
Pénzeli, P., Dózsa, L., Degn, H. (1998) “The Copper Catalysed Reduction of Nitric Oxide by Ammonia in Aqueous Solution Studied by Membrane Inlet Mass Spectrometry”, Journal of Molecular Catalysis A: Chemical, Vol.136, No.3, pp.235-242.
Perego, C. and Villa, P. (1997) “Catalyst Preparation Methods”, Catalysis Today, Vol.34, No.3-4, pp.281-305.
Pérez-Ramírez, J., García-Cortés, J. M., Kapteijn, F., Mul, G., Moulijn, J. A., de Lecea, C. S. (2001) “Characterization and Performance of Pt-USY in the SCR of NOx with Hydrocarbons under Lean-burn Conditions”, Applied Catalysis B: Environmental, Vol.29, No.4, pp.285-298.
Perry, R. H. and Green, D. (1984) Perry’s Chemical Engineer’s Handbook, 6th edition, pp.3-256~3-258, McGraw-Hill Book Company, New York, USA.
Petryk, J. and Kolakowska, E. (2000) “Cobalt Oxide Catalysts for Ammonia Oxidation Activated with Cerium and Lanthanum”, Applied Catalysis B: Environmental, Vol.24, No.2, pp.121-128.
Pietron, J. J., Stroud, R. M. and Rolison, D. R. (2002) “Using Three Dimensions in Catalytic Mesoporous Nanoarchitectures”, Nano Letters, Vol.2, No.5, pp.545-549.
Pietrogiacomi, D., Sannino, D., Tuti, S., Ciambelli, P., Indovina, V., Occhiuzzi, M. and Pepe, F. (1999) “The Catalytic Activity of CuOx/ZrO2 for the Abatement of NO with Propene or Ammonia in the Presence of O2”, Applied Catalysis B: Environmental, Vol.21, No.2, pp.141-150.
Pignet, T. and Schmidt, L. D. (1974) “Selectivity of NH3 Oxidation of Platinum”, Chemical Engineering Science, Vol.29, pp.1123-1131.
Pignet, T. and Schmidt, L. D. (1975) “Kinetic of NH3 Oxidation on Pt, Rh, and Pd”, Journal of Catalysis, Vol.40, No.2, pp.212-224.
Pinna, F. (1998) “Supported Metal Catalysts Preparation”, Catalysis Today, Vol.41, No.1-3, pp.129-137.
Pintar, A. (2003) “Catalytic Processes for the Purification of Drinking Water and Industrial Effluents”, Catalysis Today, Vol.77, No.4, pp.451-465.
Pisanu, A.M. and Gigola, C.E. (1999) “NO Decomposition and NO Reduction by CO over Pd/α-Al2O3”, Applied Catalysis B: Environmental, Vol.20, No.3, pp.179-189.
Ponec, V. (2001) “Alloy Catalyst: the Concepts”, Applied Catalysis A: Generaal, Vol.222, No.1-2, pp.31-45.
Pouchert, C. J. (1981) The Aldrich Library of Infrared Spectra, Aldrich Chemical Company, Wisconsin, USA.
Praliaud, H., Mikhailenko, S., Chajar, Z. and Primet, M. (1998) “Surface and Bulk Properties of Cu-ZSM-5 and Cu/Al2O3 Solids during Redox Treatments. Correlation with the Selective Reduction of Nitric Oxide by Hydrocarbons”, Applied Catalysis B: Environmental, Vol.16, No.4, pp.359-374.
Pruden, B. B. and Le, H. (1976) “Wet Air Oxidation of Solute Components in Wastewater”, The Canadian Journal of Chemical Engineering, Vol.54, p. 319.
Qin, J. and Aika, K. I. (1998) “Catalytic Wet Air Oxidation of Ammonia over Alumina Supported Metals”, Applied Catalysis B:Environmental, Vol.16, No.3, pp. 262-268.
Rabinowitz, H. N., Tauster, S. J. and Heck, R. M. (2001) “The Effects of Sulfur & Ceria on the Activity of Automotive Pd/Rh Catalysts”, Applied Catalysis A:General, Vol.212, No.1-2, pp. 215-222.
Randall, T. L. and Knopp, P. V. (1980) “Detoxification of Specific Organic Substances by Wet Oxidation”, J. Water Pollut. Control Fed., Vol.52, pp.2117-2129.
Ranjit , K. T. and Viswanathan, B. (1997) “Photocatalytic Reduction of Nitrite and Nitrate Ions to Ammonia on M/TiO2 Catalysts”, Journal of Photochemistry and Photobiology A:Chemistry, Vol.108, No.1, pp.73-78.
Rao, G. and Sahu, H. R. (2001) “XRD and UV-Vis Diffuse Reflectance Analysis of CeO2-ZrO2 Solid Solutions Synthesized by Combustion Method”, Proc. Indian Acad. Sci. (Chem. Sci.), Vol.113, No.5-6, pp.651-658.
Reddy, K. J. and Lin, J. (2000) “Nitrate Removal from Groundwater using Catalytic Reduction”, Water Research, Vol.34, No.3, pp.995-1001.
Richardson, J. T., Peng, Y. and Remue, D. (2000) “Properties of Ceramic Foam Catalyst Supports: Pressure Drop”, Applied Catalysis A:General, Vol.204, No.1, pp.19-32.
Rocchini, E., Vicario, M., Llorca, J., de Leitenburg, C., Dolcetti, G. and Trovarelli, A. (2002) “Reduction and Oxygen Storage Behavior of Noble Metals Supported on Silica-Droped Ceria”, Journal of Catalysis, Vol.211, No.2, pp.407-421.
Roco, M. C., Williams, R. S. and Alivisatos, P. (1999) Nanotechnology Research Directions: Interagency Working Group on Nanoscience, Engineering and Technology (IWGN) Workshop Report - Vision for Nanotechnology R&D in the Next Decade, pp.1-226, NSTC, USA.
Roco, M. C. and Bainbridge, W. S. (2001) Societal Implications of Nanoscience and Nanotechnology-NSET Workshop Report, pp.1-272, NSET, Arlington, Virginia, USA.
Rodríguez, M. A. V., González, J. de D. L. and Muñoz, M. A. B. (1995) “Preparation of Microporous Solids by Acid Treatment of a Saponite”, Microporous Materials, Vol.4, pp.251-264.
Rong, H., Ryu, Z., Zheng, J. and Zhang, Y. (2002) “Effect of Air Oxidation of Rayon-based Activated Carbon Fibers on the Adsorption Behavior for Formaldehyde”, Carbon, Vol.40, pp.2291-2300.
Ros, T. G., Keller, D. E., van Dillen, A. J., Geus, J. W. and Koningsberger, D. C. (2002) “Preparation and Activity of Small Rhodium Metal Particles on Fishbone Carbon Nanofibers”, Journal of Catalysis, Vol.211, pp.85-102.
Rosso, I., Garrone, E., Geobaldo, F., Onida, B., Saracco, G. and Specchia, V. (2001) “Sulphur Poisoning of LaMn1-xMgxO3•yMgO Catalysts for Methane Combustion”, Applied Catalysis B: Environmental, Vol.34, pp.29-41.
Ruckenstein, E. and Hu, Y. H. (1997) “Catalytic Reduction of NO over Cu/C”, Industrial Engineering Chemical Research, Vol.36, No.7, pp.2533-2536.
Ryoo, M. W. and Seo, G. (2003) “Improvement in Capacitive Deionization Function of Activated Carbon by Titania Modification”, Water Research, Vol.37, pp.1527-1534.
Ryu, Z., Zheng, J. and Wang, M. (1998) “Porous Structure of PAN-based Activated Carbon Fibers”, Carbon, Vol.36, No.4, pp.427-342.
Ryu, S. K., Kim, S. Y., Li, Z. J. and Jaroniec, M. (1999) “Characterization of Silver-containing Pitch-based Activated Carbon Fibers”, Journal of Colloid and Interface Science, Vol.220, No.1, pp.157-162.
Ryu, Z., Zheng, J., Wang, M. and Zhang, B. (2000) “Nitrogen Adsorption Studies of PAN-based Activated Carbon Fibers Prepared by Activation Methods”, Journal of Colloid and Interface Science, Vol.230, No.2, pp.312-319.
Sadykov, V. A., Isupova, L. A., Zolotarskii, I. A., Bobrova, L. N., Noskov, A. S., Parmon, V. N., Brushtein, E. A., Telyatnikova, T. V., Chernyshev, V. I. and Lunin, V. V. (2000) “Oxide Catalysts for Ammonia Oxidation in Nitric Acid Production:Properties and Perspectives”, Applied Catalysis A:General, Vol.204, No.1, pp.59-87.
Sadykov, V. A., Bunina, R. V., Alikina, G. M. et al., (2001) “Supported CuO + Ag / Partially Stabilized Zirconia Catalysts for the Selective Catalytic Reduction of NOx under Lean Burn Conditions”, Journal of Catalysis, Vol.200, No.1, pp.117-130.
Salasc, S., Skoglundh, M. and Fridell, E. (2002) “A Comparison Between Pt and Pd in NOx Storage Catalysts”, Applied Catalysis B:Environmental, Vol.36, No.2, pp.155-160.
Sammes, N. M. and Steele, B. C. H.(1994)“The Catalytic Oxidation of Ammonia in a Ceramic Electrochemical Reactor, using Metal Oxide Electrodes”, Journal of Catalysis, Vol.145, No.1, pp.187-193.
Sasi, F., Duprez, D., Gérard, F. and Miloudi, A. (2003) “Hydrogen Formation in the Reaction of Steam with Rh/CeO2 Catalysts: a Tool for Characterizing Reduced Centers of Ceria”, Journal of Catalysis, Vol.213, No.2, pp.226-234.
Schay, Z., James, V. S., Pál-Borbély, G., Beck, A., Ramaswamy, A. V. and Guczi, L. (2000) “Decomposition and Selective Catalytic Reduction of NO by Propane on CuZSM-5 Zeolites: a Mechanistic Study”, Journal of Molecular Catalysis A: Chemical, Vol.162, No.1-2, pp.191-198.
Sedmak, G., Hočevar, S. and Levec, J. (2003) “Kinetics of Selective CO Oxidation in Excess of H2 over the Nanostructured Cu0.1Ce0.9O2-y Catalyst”, Journal of Catalysis, Vol.213, No.2, pp.135-150.
Seinfeld, J. H. and Pandis S. N. (1998) Atmospheric Chemistry and Physics: from Air Pollution to Climate Change, Jihn Wiley & Sons Inc., New York, USA.
Shangguan, W. F., Teraoka, Y. and Kagawa, S. (1997) “Kinetics of Soot-O2, Soot-NO and Soot-O2-NO Reactions over Spinel-type CuFe2O4 Catalyst”, Applied Catalysis B: Environmental, Vol.12, No.2-3, pp.237-247.
Shelef, M. and Graham, G. W. (1994) “Why Rhodium in Automotive Three-way Catalysts? ”, Catalysis Reviews-Sci. Eng., Vol.36, No.3, pp.433-457.
Shi, Q., Davidovits, P., Jayne, J. T., Worsnop, D. R. and Kolb, C. E. (1999) “Uptake of Gas-phase Ammonia. 1. Uptake by Aqueous Surfaces as a Function of pH”, Journal of Physical Chemistry A, Vol.103, No.44, pp.8812-8823.
Shigapov, A. N., Graham, G. W., McCabe, R. W., Peck, M. P. and Jr., H. K. P. (1999) “The Preparation of High-surface-area Cordierite Monolith by Acid Treatment”, Applied Catalysis A:General, Vol. 182, No.1, pp.137-146.
Siegel, R. W., Hu, E. and Roco, M. C. (1999) Nanostructure Science and Technology - A Worldwide Study, pp.1-336, WTEC, Loyola College, Maryland, USA.
Shim, J. W., Park, S. J. and Ryu, S. K. (2001) “Effect of Modification with HNO3 and NaOH on Metal Adsorption by Pitch-based Activated Carbon Fibers”, Carbon, Vol.39, No.1
電子全文 電子全文(限國圖所屬電腦使用)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top