跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.85) 您好!臺灣時間:2024/12/07 02:08
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:邵承宗
研究生(外文):Shao-Cheng Tsung
論文名稱:大陸沙塵暴對澎湖地區懸浮微粒特性之影響研究
論文名稱(外文):The Influence of Continental Dust Storm on Characteristics ofAmbient Particles in Pencadores
指導教授:袁中新袁中新引用關係
學位類別:碩士
校院名稱:國立中山大學
系所名稱:環境工程研究所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2003
畢業學年度:91
語文別:中文
論文頁數:166
中文關鍵詞:大陸沙塵暴澎湖懸浮微粒
外文關鍵詞:Pencadoresparticlecontinental dust storm
相關次數:
  • 被引用被引用:28
  • 點閱點閱:560
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:7
大陸沙塵暴每年於春季時侵襲台灣地區,在沙塵暴侵襲期間,除會產生大量沙塵沉降,導致光線減弱及能見度降低外,更會影響民眾健康。本研究於澎湖群島進行大陸沙塵之採樣,並分析其質量濃度、粒徑分佈、化學成份,瞭解大陸沙塵暴對澎湖地區懸浮微粒物化特性之影響。由於澎湖當地污染輕微,故能採得最具代表性之沙塵樣本,對於瞭解沙塵暴對台灣地區之實際影響具有重要意義。
本研究在澎湖群島採樣期間共監測到五波大陸沙塵,研究發現,大陸沙塵暴可沿大陸東部地區及沿大陸東部海面兩路徑傳輸至台灣,且可由西北或東北兩條不同路徑進入台灣地區。大陸沙塵暴來襲期間,大氣氣膠濃度(TSP)增加2~3倍,其中以PM10濃度增加最為明顯,PM10濃度增加部份則以PM2.5-10為主,而粗細微粒比值會因PM2.5-10濃度增加而較非沙塵暴期間高。
澎湖地區懸浮微粒特性明顯受東北季風影響,3、4月間,強風將海鹽吹入大氣中,造成PM2.5-10污染物增加,顯示澎湖地區之懸浮微粒主要由海水飛沫所貢獻。F-、Cl-、Br-、NO3-、SO42-、Na+、Mg2+及Ca2+在大陸沙塵暴期間有增加之趨勢,顯示大陸沙塵暴會其他地區之污染物傳輸至澎湖。而在污染物傳輸過程中,硫酸鹽類污染物極可能以MgSO4、CaSO4之型態存在粗微粒內。
沙塵暴期間,懸浮微粒之碳成份明顯增加,粗微粒增加部份以元素碳為主,細微粒增加部份以有機碳為主,來源可能為元素碳在傳輸過程中,於細微粒表面發生二次反應所導致。Al、K、Fe及Ca等地殼元素在沙塵暴期間濃度分別增加84%、206%、122%及8%,顯示沙塵暴會帶來其他地區之塵土,增加澎湖地區之污染量。
藉由受體模式分析可知,澎湖地區主要污染來源為交通污染及土壤揚塵。在大陸沙塵暴期間,沙塵暴微粒會帶來其他地區之污染物質,導致澎湖地區工業性污染、海水飛沫及二次污染物比例增加。
Asian dust storms invaded Taiwan in springtime. During the Asian dust-storm periods, the dust particles suspended in the atmosphere could not only deteriorate the ambient air quality, mainly high particulate matter concentration and low visibility, but also cause severely adverse effects on human health. In this study, Asian dusts were sampled at Pencadores Islands and characterized the physical and chemical characteristics to investigate the influence of Asian dust storms. Due to its clean atmosphere, Pencadores Islands can be treated as one of the best air quality background sites in Taiwan.
In this sampling campaign, five Asian dust storm episodes were observed at Pencadores Islands. Asian dusts transported to Taiwan along the east of China or the east ocean of China and invaded Taiwan from either the northeast or the northwest. The concentrations of atmospheric aerosols during Asian dust storm episodes were 2-3 times higher than the background level. The concentration of PM10 increased dramatically. The increase of PM10 concentration was mainly attributed to coarse particles. The ratio of coarse particles to fine particles for Asian dust storm periods was higher than those for non-Asian dust storm periods.
From March to April, the concentration of PM10 increased due to sea-salt aerosol blow into atmosphere by strong eastwest monsoon. It suggested that, at Pencadores Islands, seawater was major chemical species of suspended particles. The concentration of F-, Cl-, Br-, NO3-, SO42-, Na+, Mg2+, and Ca2+ increased during Asian dust storm episodes indicated that pollutant would be transport by Asian dusts. The most possible chemical species in coarse particles would be MgSO4 and CaSO4.
The carbon content of suspended particles increased dramatically. The increase of carbon content of coarse particles was mainly attributed to elemental carbon. The increase of carbon content of fine particles was mainly attributed to organic carbon from second reaction. The concentration of Al, K, Br-, Fe, and Ca increased during Asian dust storm episodes indicated that Asian dust storm would transport dusts to Pencadores Islands.
The major pollution sources were mobile sources and dust sources at Pencadores Islands. During the Asian dust-storm periods, the percentages of industrial sources, seawater, and secondary aerosols increased dramatically.
摘要…………………………………………………………………. I
英文摘要…………………………………………………………….. Ⅲ
目錄………………………………………………………….………. Ⅴ
表目錄……………………………………………………….………. Ⅷ
圖目錄……………………………………………………………….. Ⅹ
第一章、前言………………………………………………………… 1-1
1.1 研究背景……………………………………………….…. 1-1
1.2 研究目的……………………………………………….…. 1-2
第二章、文獻回顧…………………………………………………… 2-1
2.1 懸浮微粒之性質……………………………………….…. 2-1
2.1.1 懸浮微粒來源及分佈………………………….….. 2-1
2.1.2 懸浮微粒的形成機制 ………………………….…. 2-4
2.1.3 水溶性離子特性………………………………….... 2-5
2.1.4 碳成份特性………………………………………… 2-6
2.1.5 金屬成份特性…………………………………….... 2-7
2.2 大陸沙塵暴之特性………………………………….….… 2-8
2.2.1 沙塵暴之定義………….…………………………... 2-8
2.2.2 沙塵暴之成因…………………………….………... 2-9
2.3 大陸沙塵暴之影響..……………………………………… 2-11
第三章、研究方法…………………………………………………. 3-1
3.1 採樣地點選擇…………………………………………….. 3-1
3.2 採樣時間…………………………………………………. 3-5
3.3 採樣方法……….………………………………………… 3-5
3.3.1 高量採樣器………………………………………... 3-5
3.3.2 雙粒徑分道採樣器…….………………………….. 3-6
3.3.3 微孔均勻沉降衝擊器……………………………… 3-10
3.4 分析方法…………………………………………………. 3-11
3.4.1 水溶性離子成份分析……………………………… 3-11
3.4.2 碳成份分析………………………………………… 3-13
3.4.3 金屬成份分析……………………………………… 3-14
3.5 污染源分析法………………………….…………………. 3-15
3.5.1 相關矩陣分析法………………………………….... 3-15
3.5.2 氯離子損失法…………………….……………….. 3-16
3.5.3 加強因子分析法(Enrichment Factor Analysis,EF) 3-19
3.6 水溶性離子來源分析…………………………..………… 3-20
3.6.1 懸浮微粒之酸鹼性……………….………………... 3-20
3.6.2 懸浮微粒之生成機制….……...………….………... 3-20
3.6.3 懸浮微粒之硫酸鹽與硝酸鹽傳輸現象…………… 3-21
3.6.4 懸浮微粒污染來源鑑定…………………………… 3-22
3.7 品保與品管作業流程……….……………………………. 3-24
3.7.1採樣方法之品保與品管………….………………… 3-24
3.7.2 分析方法之品保與品管….………………………... 3-26
第四章 結果與討論………………………………………………… 4-1
4.1懸浮微粒質量濃度分析探討……….…………...………… 4-1
4.1.1 懸浮微粒濃度變化趨勢…………………………… 4-1
4.1.2 粗細微粒比值(PM2.5-10/PM2.5)之變化情形………... 4-11
4.1.3 懸浮微粒之逐時變化趨勢………………………… 4-13
4.2 懸浮微粒粒徑分佈分析………………………………….. 4-15
4.3 化學成份分析探討……………………………………….. 4-21
4.3.1 水溶性離子成份來源解析………………………… 4-21
4.3.2 水溶性離子粒徑分佈分析………………………… 4-34
4.4 碳成份來源解析………………………………………….. 4-37
4-5 金屬成份分析…………………………………………….. 4-42
4.6 污染來源分析…………………………………………….. 4-44
4.6.1 沙塵暴路徑分析…………………………………… 4-44
4.6.2 加強因子分析……………………………………… 4-52
4.6.3 水溶性離子相關性分析…………………………… 4-54
4.6.4 懸浮微粒酸鹼性分析……………………………… 4-55
4.6.5 受體模式分析……………………………………… 4-59
第五章結論與建議…………………………...…………………….. 5-1
5.1結論……………………………………………………….. 5-1
5.2建議……………………………………………………….. 5-3
參考文獻
附錄A 懸浮微粒之質量濃度分析
附錄B 懸浮微粒之水溶性離子濃度分析
附錄C 懸浮微粒之碳成分分析
附錄D 懸浮微粒之金屬成分分析
附錄E 澎湖地區非大陸沙塵暴期間之逆軌跡圖
附錄F 澎湖地區果葉及小門測站監測值比對
1. 行政院環境保護署 http://www.epa.gov.tw/
2. 樓基中、袁中新,”高雄市都會區酸沉降及懸浮微粒重金屬成份調查研究”,高雄市環保局研究報告,1997。
3. 袁中新、洪崇軒、王宏恩、劉山豪,“南台灣地區懸浮微粒物化特徵及生成機制探討”,一九九九年氣膠科技國際研討會論文集, 第253-261頁,台北,1999。
4. 張順欽、李崇德,“大陸沙塵暴對台灣空氣品質影響特徵之研究”,中華民國第十八屆空氣污染控制技術研討會,2001。
5. 張順欽、吳權芳,”大陸沙塵暴對台灣地區空氣品質之影響:,大陸沙塵暴對台灣地區空氣品質之影響與預測研討會,2001。
6. 李崇德、宋鎮宇、王俊凱、張士昱、王證權,”沙塵暴期間台北地區氣膠散光係數和物理化學特性”,大陸沙塵暴對台灣地區空氣品質影響與預測研討會論文集,台北,第133-156 頁,2001。
7. 林能暉、彭啟明、吳承翰,”大陸沙塵暴之長程傳輸:模式模擬與個案探討”,大陸沙塵暴對台灣地區空氣品質影響與預測研討會論文集,台北,第35-66頁,2001。
8. 袁中新、張瑞正、袁菁、楊宏宇、林文印、李崇垓、李崇德,”能見度與懸浮微粒物化特徵之相關性探討”,一九九九年氣膠研討會論文專輯,台北,第67-75頁,1999。
9. 蔡瀛逸,鄭曼婷,”高污染狀態下大氣二次氣膠組成之探討”,第十五屆空氣污染控制技術研討會論文集,第711-718 頁,高雄市,1998。
10. 陳瑞仁、林志忠、張加欽、徐誌宏、陳信儒,”大氣中硝酸鹽及硫酸鹽之粒徑分佈及乾沉降速度”,第十三屆空氣污染控制技術研討會論文集,第1119-1126頁,1996。
11. 李崇德、許文昌、林能暉,”台中地區氣膠微粒化學組成及其污染來源推估”,一九九五年氣膠研討會論文專輯,台北,第111 -118 頁,1995。
12. 許文昌、李崇德,”台北都會區氣懸微粒污染來源推估”,第九屆空氣污染控制研討會論文專輯,台南,第189-202 頁,1992。
13. 楊之遠,”大陸沙塵暴影響台灣地區空氣品質之監測與預報”,物理雙月刊,2001。
14. 劉山豪,”高雄都會區消光係數與能見度量測及細微粒污染源貢獻量解析”,國立中山大學環境工程研究所碩士論文,2000。
15. 吳承翰,”亞洲沙塵暴之模擬”,國立中央大學大氣物理研究所碩士論文,2002。
16. 林姵吟,”台北都會區黃沙時期氣膠特性”,國立中央大學環境工程研究所碩士論文,2002。
17. 葉俊榕,”大陸沙塵暴對中部地區酸性空氣污染物之影響”,國立中興大學環境工程研究所碩士論文,2002。
18. 楊宏隆,大氣懸浮微粒PM2.5及PM10之特性及來源分析,國立中興大學環境工程研究所碩士論文,1999。
19. 王秋生,”台北地區懸浮微粒特性及污染源之評估”,行政院環保署空氣污染防治研究發展計畫,1997。
20. 吳啟文,”台灣中部都會區氣懸浮微粒粒徑分佈之污染物特性分析”,國立中央大學環境工程研究所碩士論文,1998。
21. 李崇德、王弼正,”台灣地區大氣氣膠特性之研究-東北季風影響下台北地區細微粒及其氣體前驅物特性分析”,國立中央大學環境工程研究所碩士論文,1996。
22. Ackermann-Librich, U., Leuenberger, P., Schwartz, J., Schindler, C., “SAPALDIA-term, Lung Function and Long Term Exposure to Air Pollutants in Switzerland”. Journal of Respiratory and Critical Care Medicine, Vol. 155, pp.122-129 ,1997.
23. Appel, B. R., Hoffer, E. M., Kothny, E. L., Wall, S. M., Haik, M., and Knights, R. L. “Analysis of Carbonaceous Material in Southern California Atmospheric Aerosols” Environmental Science and Technology, Vol. 13, pp. 98-104, 1979.
24. Andrews, E., Saxena, P., Musarra, S., Hildemann, L.M., Koutrakis, P., McMurry, P.H., Olmez, I. and White, W.H.. “Concentration and Composition of Atmospheric Aerosols from the 1995 SEAVS Experiment and a Review of the Closure between Chemical and Gravimetric Measurements”. Journal of Air and Waste Management Association, Vol. 50, p648-664, 2000.
25. Barbara, J. T. and Lin H.J “Species Contributions to PM2.5 Mass Concentrations: Revisiting Common Assumptions for Estimating Organic Mass". Aerosol Science and Technology. Vol 30, pp. 602-610, 2001.
26. Ma, C. J. and Kasahara M,“Characteristics of Single Particles Sampled in Japan During the Asian Dust-storm Period”, Atmos. Environ, Vol. 35, pp.2707-2714 ,2001.
27. Calvert J. G. and Stockwell W. R., “ Acid Generation in the Troposphere by Gas-phase Chemistry,”Environmental Science and Technology, Vol. 17, No. 9, pp. 428A-443A ,1983.
28. Carmichael, G. R. “Seasonal Variation of Aerosol Composition at Cheju, Korea”, Atmospheric Environment, Vol. 30 , No. 13, pp.2407-2416, 1996.
29. Dasch, J. M. and Cadle, S. H. “Atmospheric Carbon Particles in the Detroit Urban Area: Wintertime Sources and Sinks”, Aerosol Science and Technology, Vol. 10, No. 2, pp. 236-248, 1989.
30. Fang, S.H. and Chen, H.W., “Air Quality and Pollution Control in Taiwan”, Atmospheric Environment, Vol. 30, pp. 735-741, 1996.
31. Gray, H. A. , Cass, G. R. , Huntzicker, J. J. , Heyerdahl, E. K. , and Rau, J. A. , “Characteristics of Atmospherics Organic and Elemental Carbon Particle Concentrations in Los Angeles,” Environmental Science and Technology, Vol.20 , pp.580-589 ,1986.
32. Hamilton, R. S. and Mansfield, T. A. “Airborne Particulate Elemental Carbon: Its Sources in Transport and Contribution to Dark Smoke and Soiling”, Atmospheric Environment, Vol. 25A, pp. 715-723, 1991.
33. Harrison, R. M. and Kitto A. M. N.,“Field Intercomparison of Filter Pack and Denuder Sampling Methods for Reactive Gaseous and Particulate Pollutants,” Atmospheric Environment, Vol. 24A, pp. 2633-2640 , 1990.
34. Hoek G., Mennen M. G., Allen G. A., Hofschreuder P. and Meulen A., “ Concentrations of Acidic Air Pollutants in the Netherlands,”Atmospheric Environment, Vol. 30, pp. 3141-3150, 1996.
35. Teinil K., Hillamo R., Kerminen, V. M. “Aerosol Chemistry During the NICE Dark and Light Campaigns,” Atmospheric Environment, Vol. 37, pp. 563-575, 2003.
36. Kerminen ,V. M. , Pakkanen, T. A. and Hillamo, R. E. ”Interactions between Inorganic Trace Gases and Supermicrometer Particles at a Costal Site,” Atmospheric Environment, Vol. 31, pp.2753-2765, 1997.
37. Kulmala, M., Keronen, P., Laaksonen, A., Vesala, T., and Korhonen, P., “The Effect of HCl on Cloud Droplet Formation,” J. Aerosol Sci., Vol. 26, Suppl. 1, pp. S413-S414 ,1995.
38. Kagawa, M., Ishizaka, Y., Ohta, K., “Sources of Sulfate in Winter Aerosols Over the Sea of Japan as Inferred from Selenium Composition”, Atmospheric Environment, Vol. 37, pp. 1593-1600, 2003.
39. McMurry, P.H., and Zhang, X.Q., ”Size Distributions of Ambient Organic and Elemental Carbon,” Aerosol Science and Technology, Vol. 10, pp. 430-437, 1989.
40. Mehlmann A. and P. Warneck, “ Atmospheric Gaseous HNO3, Particulate Nitrate, and Aerosol Size Distributions of Major Ionic Species at a Rural Site in Western Germany,”Atmospheric Environment, Vol. 29, No. 17, pp. 2359-2373, 1995.
41. Nisson, B.A., “Model of the Relation between Aerosol Extinction and Meteorological Parameter,” Vol. 28, pp. 815-825, 1994.
42. Pakkanen, T. A. ”Study of Formation of Coarse Particle Nitrate Aersol,” Atmospheric Environment, Vol. 30, No. 14, pp. 2475-2482, 1996.
43. Pillay, K.K., and Thomas, C.C., “Determination of the Trace Element Levels in Atmospheric Pollutions by Neutron Activation Analysis,”. Journal of Radioanalytical Chemistry, Vol. 7, pp. 107-118, 1971.
44. Possanzini M., Masia, P. and Palo, V.D., “Speciation of Ammonium-containing Species in Atmospheric Aerosol,” Atmospheric Environment, Vol. 26A, pp. 1995-2000 ,1992.
45. Robert, H., Susumu, T., Mikio, K., Regina, H., ”Long-term Characterization of Carbonaceous Aerosol in Uji, Japan,” Atmospheric Environment, Vol. 36, pp. 1267-1275, 2002.
46. Scheff, P.A. and Valiozis, C., ”Characterization and Source Identification of Respirable Particulate Matter in Athens, Greece,” Atmospheric Environment, Vol. 24A(1), pp. 203-211, 1990.
47. Tuch, Th., Mirme, A., Tamm, E., Heinrich, J., Heyder, J., Brand, P., Roth, Ch., Wichmann, H. E., Pekkanen, J., and Kreyling, W. G. “Comparison of Two Particle-size Spectrometers for Ambient Aerosol Measurements,” Atmospheric Environment, Vol. 34, pp. 139-149, 2000.
48. Watson, J. G., ”The Science of Fine Particlate Matter,” Workshop on Sampling, Regulation, and Light Scattering Effects of PM2.5,” pp. 1-14, 1998.
49. Watson, J.G. , Chow, J.C. ”Clear Sky Visibility as a Challenge for Society,” Workshop on Samplingk, Regulaiton, and Light Scattering Effects of PM2.5, pp .259-284, 1998.
50. Wall, S. M. , John, W. and Ondo, .J.L.,”Measurement of Aerosol Size Ditribution for Nitrate Major Ionic Species,” Atmospheric. Environmental, Vol. 22, pp. 1649-1656, 1988.
51. Wolff, G. T., Groblicki, P.J., and Cadle, S.H., ”Particulate Carbon at Various Locations in the United States,” in Particulate Carbon Atmospheric Life Cycle, Wolff, G. T. and R. L. Klimisch (Eds.), Plenum Press, New York, 297, 1982.
52. Yang T. Y., “A Study of Characteristics of Acidic Aerosols at Amonitoring Station in Taipei,” MS Thesis, Institute of Environmental Engineering, National Chiao Tnng University, Taiwan,1997.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top