跳到主要內容

臺灣博碩士論文加值系統

(44.200.27.215) 您好!臺灣時間:2024/04/20 09:54
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:卓裕傑
研究生(外文):Yu-Chieh Cho
論文名稱:波長轉換用準相位匹配鈮酸鋰晶體光纖之分析與研製
論文名稱(外文):The Study and Fabrication of Quasi-phase-matched LiNbO3 Crystal Fiber for Wavelength Conversion
指導教授:黃升龍
指導教授(外文):Sheng-Lung Huang
學位類別:碩士
校院名稱:國立中山大學
系所名稱:通訊工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2003
畢業學年度:91
語文別:英文
論文頁數:70
中文關鍵詞:波長轉換準相位匹配
外文關鍵詞:PPLNwavelength conversionQPM
相關次數:
  • 被引用被引用:2
  • 點閱點閱:215
  • 評分評分:
  • 下載下載:22
  • 收藏至我的研究室書目清單書目收藏:0
全光波長轉換器是下一代光纖網路的核心技術之一,尤其當訊號量超過10 Gbit/s,全光元件以其高速及相容於各式訊號格式,比傳統光電-電光轉換具有更大之優勢。

本論文利用鈮酸鋰晶體光纖製作準相位匹配全光波長轉換器。利用雷射加熱基座生長法外加高電場,在不需製作光罩電極的情形下,製作出週期性極化反轉之鈮酸鋰晶纖,針對不同的應用,其週期最小可達9.76 um,生長長度超過160 mm 之X軸晶體光纖。製作過程中觀察到的微擺動現象,經過實驗與證實,可加以控制來幫助極化反轉之形成。週期性區域反轉之鈮酸鋰晶體光纖經過光學測試,最強轉換訊號之波長與設計值只有0.27%之誤差,足以說明定義週期之準確性,而此晶纖之非線性轉換頻寬及溫度頻寬分別為17.2 nm和 42.8oC.

現正持續改進反轉週期之均勻度,設計更寬頻的週期結構,並製作具有波導效果的鈮酸鋰晶體光纖,以期實現高效能準相位匹配之全光波長轉換器。
All-optical wavelength conversion is necessary for efficient managing and routing optical signals in a complex all-optical network model. With the bit-rate increases as time evolves, all-optical conversion will become more promising due to its high transparency for data rate and format and the low cost penalty compared with O/E/O method.

Periodically poled LiNbO3 crystal fiber (PPLNCF) for wavelength conversion is successfully grown by LHPG method with in situ electric field bias. The pitch depends on the frequency of applied external electric field. Domain period of 9.76 microms and crystal length over 160 mm are demonstrated in this thesis. Electrically induced micro-swing during growth is managed to assist poling process. After the optical test, 0.27% peak offset shows the accuracy of our fabrication. The wavelength and temperature bandwidths were measured to be 17.2 nm and 42.8oC.

With the improvement of uniformity, broadband design, and the implementation of guiding structure, high quality PPLNCF will be widely promoted for its superior performance.
中文摘要 i
Abstract ii
List of contents iii
List of figures v
List of tables vii
Chapter 1 Introduction 1
Chapter 2 Phase-matching theory and poling mechanism 4
2.1 Nonlinear interaction and birefringent phase matching 4
2.2 Theory of quasi-phase matching 12
2.3 LiNbO3 crystal structure and properties 16
2.3.1 Historical review of LiNbO3 17
2.3.2 Properties and crystal structure of LiNbO3 18
2.3.3 Ferro- and para- electric states 20
2.3.4 Compositional dependence 21
2.4 Poling techniques 24
2.4.1 Li+ out-diffusion 24
2.4.2 Ti3+, Mg2+ in-diffusion 25
2.4.3 Electron beam writing 26
2.4.4 Proton exchange 26
2.4.5 External electric field 26
2.4.6 Periodic laminar ferroelectric domains 27
2.4.7 Heat modulation 27
Chapter 3 Implementation of quasi-phase-matched device 29
3.1 Growth setup 29
3.1.1 Laser-heated-pedestal growth (LHPG) 29
3.1.2 Electrodes and external electric field 33
3.2 Electric field induced micro-swing 36
3.2.1 Micro-swing without melt connection 36
3.2.2 Micro-swing with melt connection 38
3.3 Design of domain period 41
3.3.1 Bulk material 41
3.3.2 Waveguide structure 44
3.4 Results and analysis 45
3.4.1 The relation of micro-swing and poling 46
3.4.2 Superposition of external field and pyroelectric field 48
3.4.3 Tilted domain and growth ratio 49
3.4.4 Micro-swing induced poling 52
3.5 Asymmetric growth 53
Chapter4 Device characterization 56
4.1 Sample preparation 56
4.2 SHG test 57
4.3 Wavelength and temperature bandwidth 59
Chapter5 Conclusions 64
5.1 Summary 64
5.2 Future work 65
Reference 66
Chapter 1
1.1M. H. Chou, I. Brener, M. M. Fejer, E. E. Chaban, and S. B. Christman, “1.5mm-band wavelength conversion based on cascaded second-order nonlinearity in LiNbO3 waveguides,” IEEE Photonics Technol. Lett., vol. 11, pp. 653-655, 1999.

Chapter 2
2.1J. A. Armstrong, N. Blombergen, J. Ducuing, and P. S. Pershan, “Interaction between light waves in a nonlinear dielectric,” Phys. Rev., vol. 127, pp. 1918-1939, 1962.
2.2A. Yariv, “Optical electrionics in modern communications,” Oxford, 5th edition, 1997.
2.3J. A. Armstrong, N. Blombergen, J. Ducuing, and P. S. Pershan, “Interaction between light waves in a nonlinear dielectric,” Phys. Rev., vol. 127, pp. 1918-1939, 1962.
2.4K. Mizuuchi, K. Yamamoto, M. Kato, and H. Sato, “Broadening of the phase-matching bandwidth in quasi-phase-matched second-harmonic generation,” IEEE J. of Quantum Electron., vol. 30, pp. 1596-1604, 1994.
2.5D. H. Jundt, “Temperature-dependent Sellmeier equation for the index of refraction, ne, in congruent lithium niobate,” Opt. Lett., vol. 22, pp. 1553-1555, 1997.
2.6L. Lee, Y. Cho, C. Lin, C. Lo and S. Huang, “The study and fabrication of periodically-poled lithium niobate crystal fiber,” Optics and photonics Taiwan II, pp. 108-110, 2002.
2.7林宜慶, “高電壓致鈮酸鋰小週期區域反轉與動力學研究,” 國立台灣大學光電工程學研究所碩士論文, 1999.
2.8V. Gopalan, T. Mitchell, Y. Furukawa, and K. Kitamura, “The role of nonstoichiometry in 180o domain switching of Li,” Appl. Phys. Lett., vol. 72, pp. 1981-1983, 1998.
2.9K. Kitamura, Y. Furukawa, Y. Ji, M. Zgonik, C. Medrano, G. Montemezzani, and P. Günter, “Photorefractive effect in LiNbO3 crystals enhanced by stoichiometry control,” J. Appl. Phys., vol. 82, pp. 1006-1009, 1997.
2.10K. Niwa, Y. Furukawa, S. Takekawa and K Kitamura, “Growth and characterization of MgO doped near stoichiometric LiNbO3 crystals as a new nonlinear optical material,” J. Crystal Growth, vol. 208, pp. 493-500, 2000.
2.11L. H. Peng, Y. C. Zhang, and Y. C. Lin, “Zinc oxide doping effects in polarization switching of lithium niobate,” Appl. Phys. Lett., vol. 78, pp. 1-3, 2001.
2.12T. Volk, M. Wohlecke, N. Rubinina, N. V. Razumovski, F. Jermann, C. fischer, and R. Bower, “LiNbO3 with the damage-resistant impurity indium,” Appl. Phy., vol. 60, pp. 217-225, 1995.
2.13D. A. Bryan, R. Gerson, and H. E. Tomaschke, “Increased optical damage resistance in lithium niobate,” Appl. Phys. Lett., vol. 44, pp. 847-849, 1984.
2.14A. Prokhorov and Y. Kuz’minov, “Physics and chemistry of crystalline lithium niobate,” The Adam Hilger, 1990.
2.15V. Gopalan, T. Mitchell, Y. Furukawa and K. Kitamura, “The role of nonstoichiometry in 180o domain switching of Li,” Appl. Phys. Lett., vol. 72, pp. 1981-1983, 1998.
2.16N. Iyi, Y. Yajima and K. Kitamura, “Defect structure model of MgO-doped LiNbO3,” J. Solid State Chem., vol. 148, pp. 118, 1995.
2.17Y. Furukawa, K. Kitamura, S. Takekawa, K. Niwa, Y. Yajima, N. Iyi, I. Mnushkina, P. Guggenheim, and J. Martin, “The correlation of MgO-doped near-stoichiometric LiNbO3 composition to the defect structure,” J. Crys. Growth, vol. 211, pp. 230-236, 2000.
2.18L. Peng, Y. Zhang, and Y. Lin, “Zinc oxide doping effects in polarization switching of lithium niobate,” Appl. Phys. Lett., vol. 78, pp. 4-6, 2001.
2.19J. R. Carruthers, G. E. Peteson, and M. Grasso, “Nonstoichiometry and crystal growth of lithium niobate,” J. Appl. Phys., vol. 42, pp. 1846-1851, 1971.
2.20C. Lau, P. Wei, C. Su, and W. Wong, “Fabrication of magnesium-oxide-induced lithium out-diffusion waveguides,” IEEE Photon. Technol. Lett., vol. 4, pp. 872-875, 1992.
2.21S. Sudo, A. Cordova-Plaza, R. Byer and H. Shaw, “MgO: LiNbO3 single-crystal fiber with magnesium-ion in-diffused cladding,” Optics Lett., vol. 12, pp. 938-940, 1987.
2.22Y. Zhi, S. Zhu, and J. Hong, “Domain inversion in LiNbO3 by proton exchange and quick heat treatment,” Appl. Phys. Lett., vol. 65, pp. 558-560, 1994.
2.23H. Ito, C. Takyu and H. Inaba, “Fabrication of periodic domain grating in LiNbO3 by electron beam writing for application of nonlinear optical processes,” Electron. Lett., vol. 27, pp. 1221-1222, 1991.
2.24I. Camlibel, “Spontaneous polarization measurements in several ferroelectric oxides using pulsed-field method,” J. Appl. Phys., vol. 40, pp. 1690-1693, 1969.
2.25M. Yamada, N. Nada, M. Saitoh, and K. Watanabe, “First-order quasi-phase matched LiNbO3 waveguide periodical poled by applying an external field for efficient blue second harmonic generation,” Appl. Phys. Lett., vol. 62, pp. 435-436, 1993.
2.26L. Myers, R. Eckardt, M. Fejer, R. Byer, W. Bosenbeg, and J. Pierce, “Quasi-phase matched optical parametric oscillators in bulk periodically poled LiNbO3 ,” J. Opt. Soc. Am. B., vol. 12, pp. 2102-2116, 1995.
2.27G. Miller, “Periodically poled Lithium Niobate: Modeling, Fabrication, and Nonlinear-optical performance”, Ph. D. dissertation, Stanford university, 1998.
2.28D. Feng, N. Ming, J. Hong, Y. Zhu, and Y. Wang, “Enhancement of second-harmonic generation in LiNbO3 crystal with periodic laminar ferroelectric domains,” Appl. Phys. Lett., vol. 37, pp. 607-609, 1980.
2.29J. Chen, Q. Zhou, J. Hong, W. Wang, N. Ming and C. Fang, “Influence of growth striations on para-ferroelectric phase transitions: Mechanism of the formation of periodic laminar domains in LiNbO3 and LiTaO3“, J. Appl. Phys., vol. 66, pp. 336-341, 1989.
2.30D. H. Jundt, “Lithium niobate: single crystal fiber growth and quasi-phase-matching,” Ph.D. dissertation, Stanford University, 1991.
2.31G. Magel, M. Fejer, and R. Byer, “Quasi-phase matched second-harmonic generation of blue light in periodically poled LiNbO3,” Appl. Phys. Lett., vol. 56, pp. 108-110, 1990.

Chapter 3
3.1M. H. Chou, I. Brener, M. M. Fejer, E. E. Chaban, and S. B. Christman, “1.5mm-band wavelength conversion based on cascaded second-order nonlinearity in LiNbO3 waveguides,” IEEE Photonics Technol. Lett., vol. 11, pp. 653-655, 1999.
3.2G. Magel, M. Fejer and R. Byer, “Quasi-phase-matched second-harmonic generation of blue light in periodically poled,” Appl. Phys. Lett., vol. 56, pp. 108-110, 1990.
3.3S. Uda and W. A. Tiller, “The influence of an interface electric field on the distribution coefficient of chromium in LiNbO3,” Journal of Crystal growth, 121, pp. 93-110, 1992.
3.4A.A. Ballman and H. Brown, Ferroelectrics, vol. 4, pp. 189, 1972.
3.5M. Houé and P. D. Townsend, “Thermal polarization reversal of lithium niobate,” Appl. Phys. Lett., vol. 66, pp. 2667-2669, 1995.
3.6林嘉進, “準相位匹配鈮酸鋰晶纖之研製,” 國立中山大學光電工程研究所碩士論文, 2002.
3.7L. Huang and A Jaeger, “Discussion of domain inversion in LiNbO3,” Appl. Phys. Lett., vol. 65, pp. 1763-1765, 1994.
3.8K. Nakamura, H. Ando, and H Shimizu, “Ferroelectric domain inversion caused in LiNbO3 plates by heat treatment,” Appl. Phys. Lett., vol. 50, pp. 1413-1414, 1987.
3.9G. Agrawal, “Fiber-optic communication systems,” 2nd edition, Wiley- Interscience, 1997.
3.10M. Fejer and R. Byer, “Ferroelectric domain structures in single-crystal fibers,” J. Crystal Growth, vol. 78, pp. 135-143, 1986.

Chapter 4
4.1劉立仁, “以控制腔長的迴授系統做摻釹氟化釔鋰鎖模雷射之穩定性研究“, 國立中山大學光電工程研究所碩士論文, 1996.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊