|
參考文獻 [1] Hunziker, E. B., Kapfinger, E. (1998). Removal of proteoglycans from the surface of defects in articular cartilage transiently enhances coverage by repair cells. J. Bone Joint Surg. 80, 144-50. [2] Bell, E. Tissue Enigneering in perspective. Principles of tissue engineering (eds. Lanza, R., Langer, R., Chick, W.) (1997) Landes, R. G. Co, New York. [3] Stockwell, R. A. (1967). The cell density of human articular and costal cartilage. J. Anat. 101, 753-63. [4] Buckwalter, J. A., Mankin, H. J. (1997). Articular cartilage. J. Bone Jt. Surg. 79, 600-611. [5] Fischer, A. E., Carpenter, T. A., Tyler, J. A., Hall, L. D. (1995). Visualisation of mass transport of small organic molecules and metal ions through articular cartilage by magnetic resonance imaging. Magn. Reson. Imaging 13, 819-26. [6] Buckwalter, J. A., Rosenberg, L. C., Hunziker, E. B. Articular cartilage: composition, structure, response to injury, and methods of facilitation repair. Articular Cartilage and Knee Joint Function: Basic Science and Arthroscopy (eds. Ewing, J. W.) (1990) Raven Press, New York. [7] Linn, F. C., Sokoloff, L. (1965). Movement and composition of interstitial fluid of cartilage. Arthrit. and Rheumat. 8, 481-494. [8] Hardingham, T. E., Fosang, A. J., Dudhia, J. Aggercan, the chondroitin/keratan sulfate proteoglycan from cartilage. Articular Cartilage and Ostroarthritis (eds. Kuettner, K. E., Schleyerbach, R., Peyron, J. G., Hascall, V. C.) (1992) Raven Press, New York. [9] Rosenberg, L. C. Structure and function of dermatan sulfate proteoglycans in articular cartilage. Articular Cartilage and Ostroarthritis (eds. Kuettner, K. E., Schleyerbach, R., Peyron ,J. G., Hascall, V. C.) (1992) Raven Press, New York. [10] Buckwalter, J. A., Rosenberg, L. C. (1982). Electron microscopic studies of cartilage proteoglycans. Direct evidence for the variable length of the chondroitin sulfate-rich region of proteoglycan subunit core protein. J. Biol. Chem. 257, 9830-9. [11] Buckwalter, J. A., Rosenberg, L. C., Tang, L. H. (1984). The effect of link protein on proteoglycan aggregate structure. An electron microscopic study of the molecular architecture and dimensions of proteoglycan aggregates reassembled from the proteoglycan monomers and link proteins of bovine fetal epiphyseal cartilage. J. Biol. Chem. 259, 5361-3. [12] Roughley, P. J. and Lee, E. R. (1994). Cartilage proteoglycans: structure and potential functions. Microsc. Res. Tech. 28, 385-97. [13] Hildebrand, A., Romaris, M., Rasmussen, L. M., Heinegard, D., Twardzik, D. R., Border, W. A., Ruoslahti, E. (1994). Interaction of the small interstitial proteoglycans biglycan, decorin and fibromodulin with transforming growth factor beta. Biochem. J. 302, 527-34. [14] Mackay, A. M., Beck, S. C., Murphy, J. M., Barry, F. P., Chichester, C. O., Pittenger, M. F. (1998). Chondrogenic differentiation of cultured human mesenchymal stem cells from marrow. Tissue Eng. 4, 415-28. [15] Freed, L. E., Vunjak-Novakovic, G., Langer, R. (1993). Cultivation of cell-polymer cartilage implants in bioreactors. J Cell Biochem. 51, 257-64. [16] Freed, L. E., Vunjak-Novakovic, G. Tissue culture bioreactor: chondrogenesis as a model system. Principles of tissue engineering (eds. Lanza, R., Langer, R., Chick, W.) (1997) Landes, R. G. Co, New York. [17] Freed LE, Vunjak-Novakovic, G. (1997). Microgravity tissue engineering. In Vitro Cell Dev. Biol. Anim. 33, 381-5. [18] Vunjak-Novakovic, G., Martin, I., Obradovic, B., Treppo, S., Grodzinsky, A. J., Langer, R., Freed, L. E. (1999). Bioreactor cultivation conditions modulate the composition and mechanical properties of tissue-engineered cartilage. J. Orthop. Res. 17, 130-8. [19] Obradovic, B., Carrier, R. L., Vunjak-Novakovic, G., Freed, L. E. (1999). Gas exchange is essential for bioreactor cultivation of tissue engineered cartilage. Biotechnol. Bioeng 63, 197-205. [20] Pazzano, D., Mercier, K. A., Moran, J. M., Fong, S. S., DiBiasio, D. D., Rulfs, J. X., Kohles, S. S., Bonassar, L. J. (2000). Comparison of chondrogensis in static and perfused bioreactor culture. Biotechnol. Prog. 16, 893-6. [21] Halberstadt, C. R., Hardin, R., Bezverkov, K., Snyder, D., Allen, L., Landeen, L. (1994). The in vitro growth of a three-dimensional human dermal replacement using a single-pass perfusion system. Biotechnol. Bioeng. 43, 740-746. [22] Agrawal, C. M., McKinney, J. S., Lanctot, D., Athanasiou, K. A. (2000). Effects of fluid flow on the in vitro degradation kinetics of biodegradable scaffolds for tissue engineering. Biomaterials 21, 2443-52. [23] Carver, S. E., Heath, C. A. (1999). Influence of intermittent pressure, fluid flow, and mixing on the regenerative properties of articular chondrocytes. Biotechnol. Bioeng. 65, 274-81. [24] Carver, S. E., Heath, C. A. (1999). Increasing extracellular matrix production in regenerating cartilage with intermittent physiological pressure. Biotechnol. Bioeng. 62, 166-74. [25] Glowacki, J., Mizuno, S., Greenberger, J. S. (1998). Perfusion enhances functions of bone marrow stromal cells in three-dimensional culture. Cell Transplant 7, 319-26. [26] Gooch, K. J., Kwon, J. H., Blunk, T., Langer, R., Freed, L. E., Vunjak-Novakovic, G. (2001). Effects of mixing intensity on tissue-engineered cartilage. Biotechnol. Bioeng. 72, 402-7. [27] Vunjak-Novakovic, G., Obradovic, B., Martin, I., Bursac, P. M., Langer, R., Freed, L. E. (1998). Dynamic cell seeding of polymer scaffolds for cartilage tissue engineering. Biotechnol. Prog. 14, 193-202. [28] Berson, R. E., Pieczynski, W. J., Svihla, C. K., Hanley, T. R. (2002). Enhanced mixing and mass transfer in a recirculation loop results in high cell densities in a roller bottle reactor. Biotechnol. Prog. 18, 72-7. [29] Unger, D. R., Muzzio, F. J., Aunins, J. G., Singhvi, R. (2000). Computational and experimental investigation of flow and fluid mixing in the roller bottle bioreactor. Biotechnol. Bioeng. 70, 117-30. [30] Komsa-Penkova, R., Spirova, R., Bechev, B. (1996). Modification of Lowry''s method for collagen concentration measurement. J. Biochem. Biophys. Methods 32, 33-43. [31] Liao, C. J., Chen, C. F., Chen, J. H., Chiang, S. F., Lin, Y. J., Chang, K. Y. (2002). Fabrication of porous biodegradable polymer scaffolds using a solvent merging/particulate leaching method. J. Biomed. Mater. Res. 59, 676-81. [32] Kim, Y. J., Sah, R. L., Doong, J. Y., Grodzinsky, A. J. (1988). Fluorometric assay of DNA in cartilage explants using Hoechst 33258. Anal. Biochem. 174, 168-76. [33] Farndale, R. W., Buttle, D. J., Barrett, A. J. (1986). Improved quantitation and discrimination of sulphated glycosaminoglycans by use of dimethylmethylene blue. Biochim. Biophys. Acta. 883, 173-7. [34] Freed, L. E., Hollander, A. P., Martin, I., Barry, J.R., Langer, R., Vunjak-Novakovic, G. (1998). Chondrogenesis in a cell-polymer-bioreactor system. Exp. Cell Res. 240, 58-65. [35] Saini, S., Wick, T. M. (2003). Concentric cylinder bioreactor for production of tissue engineered cartilage: effect of seeding density and hydrodynamic loading on construct development. Biotechnol. Prog.19, 510-21. [36] Kato, Y., Iwamoto, M. (1990). Fibroblast growth factor is an inhibitor of chondrocyte terminal differentiation. J. Biol. Chem. 265, 5903-9. [37] Clark, A. G., Rohrbaugh, A. L., Otterness, I., Kraus, V. B. (2002). The effects of ascorbic acid on cartilage metabolism in guinea pig articular cartilage explants. Matrix Biol. 21, 175-84.
|