(3.231.230.175) 您好!臺灣時間:2021/04/16 00:33
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:許祖榮
研究生(外文):Shiu Tzu-Rung
論文名稱:以米糠為擔體之天然固定化酵素的製備及其生化性質之研究
論文名稱(外文):Preparation and characterization of naturally occuring immobilized rice bran lipase
指導教授:吳文騰
指導教授(外文):Wu Wen-Teng
學位類別:碩士
校院名稱:國立清華大學
系所名稱:化學工程學系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2003
畢業學年度:91
語文別:中文
論文頁數:64
中文關鍵詞:米糠固定化酵素脂肪分解酶
外文關鍵詞:ImmobilizationRice bran lipaseDefatting process
相關次數:
  • 被引用被引用:1
  • 點閱點閱:214
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究是利用碾米過後的米糠經過一些特殊處理後,可將米糠中所含之油脂去除並將脂肪分解酶保留,形成一種不需經過固定化步驟就能形成之天然固定化酵素(immobilized rice-bran lipase ; IRB-L)。研究中發現,20:1(v/w)的米糠以丙酮於40℃下進行脫油處理5分鐘後可獲得最高的固定化酵素活性12.8 U/g。在生化性質探討方面,其最適水解反應pH值和溫度分別為pH=10和80℃;而固定化酵素可以在40℃下保溫一小時而不失活,在60℃的環境下保溫一小時仍可維持73.4%的活性。經由研究得知,IRB-L在批次水解反應下重複使用了5次之後,仍維持了72%的活性。在儲存安定性方面,固定化酵素可以在40℃的環境下保存40天仍維持80%以上的活性。在酵素動力參數探討方面,固定化酵素之活化能(Ea)、Vmax及Km值則分別為2.64 kcal/gmol、15.89 U/g及36mM。使用10% (wt%)的固定化酵素分別與黃豆油(12小時)及食用廢油(48小時)進行水解反應,皆可達到80%的轉化率。

A naturally occurring immobilized rice bran lipase (IRB-L) prepared by a simply process of defatting for rice bran with organic solvent has been successfully developed. Low oil extraction possessed high activity of lipase was observed when the extraction ratio of acetone to rice bran was 20:1 used to defat. The hydrolytic activity of IRB-L increased from 3.87U/g to 12.8U/g at the optimum pH 10 and temperature 80℃. IRB-L retained 72% of its initial activity after 5 batch hydrolytic cycles. Broad pH tolerance and higher thermo-stable ability could be achieved for the IRB-L. After 45 days of storage at 40℃ or 4℃, the residual activity of the IRB-L was 81%. The kinetic parameters Km and Vmax for IRB-L were 36mM and 15.89 U/g. The activation energy 2.64kcal/gmole for IRB-L was observed lower than that of the other literatures reported which indicated a high affinity for the supports active site and lower sensitivity to temperature. In addition, about 80% of conversion was achieved when IRB-L used as a biocatalyst to hydrolyze the soybean oil and waste oil for 12hr and 72hr, respectively.

摘要 Ⅰ
英文摘要 Ⅱ
目錄 Ⅲ
圖目錄 Ⅵ
表目錄 Ⅷ
第一章 緒論 1
第二章 文獻回顧 3
2.1 脂肪分解酶(Lipase) 3
2.2 酵素反應動力機制 8
2.3 米糠的組成成份 9
2.4 米糠中的脂肪分解酶 11
2.5 實驗動機 14
第三章 實驗材料與方法 16
3.1 實驗材料 16
3.2 儀器及設備 17
3.3 IRB-L的製備 18
3.4 高效能液相層析儀(HPLC)分析方法 18
3.5 酵素活性測定方法 19
3.6 不同製程所得到的IRB-L 21
3.7 IRB-L的生化性質探討 22
3.8 IRB-L對黃豆油水解活性的探討 24
3.9 IRB-L對廢油水解活性的探討 24
第四章 實驗結果與討論 25
4.1 米糠萃取條件的探討 25
4.1.1 不同製程得到的IRB-L活性研究 25
4.1.2 不同溶劑對米糠去脂的效果以及
活性比較 27
4.1.3 以不同體積的丙酮進行米糠去脂
的影響 31
4.2 IRB-L生化性質探討 35
4.2.1 IRB-L的水解反應時間趨勢 35
4.2.2 IRB-L水解反應的最適pH與溫度 37
4.2.3 IRB-L的pH與溫度安定性 40
4.2.4 IRB-L的重複回收以及儲存安定
性研究 43
4.2.5 酵素動力學的研究 47
4.3 IRB-L在油脂水解上的應用 50
4.3.1 溫度對IRB-L進行油脂水解的影響 50
4.3.2 pH值對IRB-L進行油脂水解的影響 52
4.3.3 黃豆油與水的組成比例對IRB-L水
解的影響 52
4.3.4 以IRB-L水解食用廢油的研究 55
第五章 結論及未來展望 58
5.1 結論 58
5.2 未來展望 59
參考文獻 60

Afolabi OA, Ologunde MO, Anderson WA, Read JS, Dacosta MD, Epps FA, Ayorinde FO. The use of lipase (acetone power) from Vernonia galamensis in the fatty acid analysis of seed oils J Chem Technol Biot 1991; 51:41-46.
Aizono Y, Funatsu M, Fujiki Y, Watanabe M. Purification and characteri- zation of rice bran lipase II. Agr Biol Chem 1976; 40:317-324.
Anita A, Sastry CA, Hashim MA. Immobilization of urease using Amberlite MB-1. Bioproc Eng 1997; 17:355-9.
Beisson F, Tiss A, Riviere C, Verger R. Methods for lipase detection and assay: a critical review. Eur J Lipid Sci Trch 2000; 102:133-153.
Bhardwaj K, Raju A, Rajasekharan R. Identification, purification, and characterization of a thermally stable lipase from rice bran. Plant Physiol 2001; 127:1728-1738.
Blow D. Enzymology: more of the catalytic triad. Nature 1990; 343:694- 695.
Borgstrom B, Brockman H L. “Lipases”, Elsevier North-Holland, Amsterdam, pp. 151-184, 1984.
Cygler M, Schrag JD. “Methods in enzymology: Lipases Part A Biotechnology” Academic Press Inc., London, 1997.
Dandik L, Aksoy HA. Applications of Nigella sativa seed lipase in oleochemical reactions. Enzyme Microb Tech 1996; 19:277-281.
Derewenda U, Brzozowski AM, Lawson DM, Derewenda ZS. Catalysis at the interface- the anatomy of a conformational change in a triglyceride lipase. Biochemistry 1992; 31:1532-1541.
Egloff MP, Marguet F, Buono G, Verger R, Cambillau C, van Tilbeurgh H. The 2.46-angstrom resolution structure of the pancreatic lipase-colipase complex inhibited by a c-11 alkyl phosphonate. Biochemistry 1995; 34: 2751-2762
Fadiloglu S, Soylemez Z. Olive oil hydrolysis by celite immobilized Candida rugosa lipase. J Agr Food Chem 1998; 46:3411-3414.
Funatsu M, Aizono Y, Hayashi K, Watanabe M, Eto M. Biochemical studies on rice bran lipase Part I. Purification and physical properties. Agr Biol Chem 1971; 35:734-742.
Goldstein L, Levin Y, Katchalski E. A water-insoluble polyanionic derivative of trypsin. II: Effect of the polyelectrolyte carrier on the kinetic behavior of the bound trypsin. Biochemistry 1964; 3:1913-1919.
Grochulski P, Bouthillier F, Kazlauskas RJ, Serreqi AN, Schrag JD. Analogs of reaction intermediates identify a unique substrate-binding site in Candida rugosa lipase. Biochemistry 1994; 33:3494-3500.
Lotrakul P, Dharmsthiti S. Lipase production by Aeromonas sobria LP004 in a medium containing whey and soybean meal. World J Microb Biot 1997; 13:163-166.
Knezevic Z, Mojovic L, Adnadjecic B. Palm Oil Hydrolysis by Lipase from Candida cylindracea Immobilized on Zeolite Type Y. Enzyme Microb Tech 1998; 22:275-280.
Malcata FX, Reyes HR, Garcia HS, Hill CG. Immobilized lipase reactors for modification of fats and oils - a review. J Am Oil Chem Soc 1990; 67: 890-910.
Martinek K, Kilbanov AM, Goldmacher VS, Berezin IV. The principles of enzyme stabilization. Biochim Biophys Acta 1977; 485:1-12.
Matsunoto M, Ohashi K. Effect of immobilization on thermostability of lipase from Candida rugosa. Biochem Eng J 2003; 14:75-7.
Mojovic L, Knezevic Z, Popadic R, Jovanovic S. Immobilization of lipase from Candida rugosa on a polymer support. Appl Microbiol Biot 1998; 50:676-681.
Pereira EB, De Castro HF, De Moraes FF, Zanin GM. Kinetic studies of lipase from Canada rugosa. Appl Biochem Biotechnol 2001; 91/93:739-752
Prabhu AV, Tambe SP, Gandhi NN, Sawant SB, Joshi JB. Rice bran lipase: extraction, activity, and stability. Biotechnol Prog 1999; 15:1083-1089.
Richardson T, Hyslop DB. “Food Chemistry”, Marcel Dekker Inc., New York, p.371, 1985.
Schrag JD, Winkler FK, Cygler M. Pancreatic lipases-evolutionary intermediates in a positional change of catalytic carboxylates. J Biol Chem 1992; 267:4300- 4303.
Shastry BS, Raghavendra R. Studies on rice bran lipase. Ind J Biochem Biophys 1971; 8:327-32.
Slavin JL, Lampe JW. Health benefits of rice bran in human nutrition. Cereal Food World 1992; 37:760-763.
Small DM. Physical behavior of lipase substrate. Method Enzymol 1997; 286:153-167.
Takano K, Kamoi I, Obara T. Studies on the mechanism of lipids hydrolyzing in rice bran. J Jpn Soc Food Sci 1990; 37:261-265.
Uppenberg J, Hansen MT, Patkarr S, Jones TA. The sequence crystal structure determination and refinement of 2 crystal forms of lipase-b from candida-antarctica. Structure 1994; 2:453-454.
Vantilbeurgh H, Egloff MP, Martinez C, Rugani N, Verger R, Cambillau C. Interfacial activation of the lipase procolipase complex by mixed micelles revealed by x-ray crystallography. Nature 1993; 362:814-820
Winkler FK, Darcy A, Hunziker W. Structure of human pancreatic lipase. Nature 1990; 343:771-774
Yang TK, Jang Y, Han JJ, Rhee JS. Enzymatic synthesis of low-calorie structured lipids in a solvent-free system. J Am Oil Chem Soc 2001; 78:291-296.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔