(3.227.208.0) 您好!臺灣時間:2021/04/20 16:34
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:蔡伸隆
研究生(外文):Shen-Long Tsai
論文名稱:以甲苯氧化菌共代謝三氯乙烯之研究
論文名稱(外文):Cometabolic Degradation of Trichloroethylene by A Toluene-Oxidizer
指導教授:黃世傑黃世傑引用關係
指導教授(外文):Shyh-Jye Hwang
學位類別:碩士
校院名稱:國立清華大學
系所名稱:化學工程學系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2003
畢業學年度:91
語文別:中文
論文頁數:103
中文關鍵詞:甲苯三氯乙烯共代謝連續批次反應器金屬
外文關鍵詞:tolueneTCEcometabolismSBRmetal
相關次數:
  • 被引用被引用:0
  • 點閱點閱:94
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究之主要目的乃是在探討甲苯分解菌Pseudomonas putida F1 共代謝三氯乙烯之能力。而本文主要可分為以下兩個部分:第一部分主要是在探討P. putida F1進行甲苯及三氯乙烯共代謝時之基本特性以及求取其相關動力參數;第二部分則是做反應器的探討,其主要內容乃是探討經PVA/alginate固定化之P. putida F1於連續批次反應器(Sequencing batch reactor, SBR)中處理含三氯乙烯廢水之可行性研究,並建立其相關預估模式。研究結果顯示:(1)P. putida F1可以甲苯為生長基質及能量基質並共代謝三氯乙烯,而其降解三氯乙烯及甲苯之最適溫度與pH分別為30℃與7。(2)本研究所求得P. putida F1於懸浮系統中之甲苯最大降解速率為0.48 day-1,而其Michaelis-Menten常數為1.31mg/L;三氯乙烯之最大降解速率為0.27 day-1,而其Michaelis-Menten常數為8.47mg/L。而若於固定化系統中,則其甲苯最大降解速率為0.37 day-1,而其Michaelis-Menten常數為1.91mg/L;三氯乙烯之最大降解速率為0.21 day-1,而其Michaelis-Menten常數為11.25mg/L。(3)適量鐵離子及鎳離子的添加將有助於提升P. putida F1對於甲苯及三氯乙烯之降解能力,然而過量的添加將會造成抑制的效果。而鉻離子及鉛離子的添加,則只會造成抑制效果,減低甲苯及三氯乙烯之降解能力。(4)本研究所架設之連續批次反應器,對於適當濃度之甲苯及三氯乙烯具有良好的去除效果。而所推導出之動力模式,可成功的預測以連續批次反應器處理含三氯乙烯及甲苯廢水時之行為及效率。

致 謝
摘 要 I
總目錄 II
表目錄 V
圖目錄 VI
第一章 緒 論 1
1-1 研究緣起 1
1-2 研究目的 2
第二章 文獻回顧 3
2.1 三氯乙烯簡介 3
2.2 三氯乙烯之共代謝 3
2.2.1 共代謝 3
2.2.2 三氯乙烯的生物降解 5
2.2.3 三氯乙烯共代謝路徑 8
2-3 微生物反應動力 8
2.3.1 單一基質限制生長 8
2.3.2 多成份基質限制生長 10
2.3.3 基質抑制生長 10
2.4 金屬對生物降解的影響 11
2.5 連續批次反應器 12
2.5.1連續批次反應器簡介 12
2.5.2連續批次反應器的優點 12
2.6 生物固定化技術 14
第三章 理論背景 16
3.1 共代謝的動力模式 16
3.1.1 背景 16
3.3.2 模式建立 16
3.2 連續批次反應器動力模式 17
3.2.1 基本假設 17
3.2.2 模式建立 18
3.2.3 固定化動力 19
第四章 材料與方法 20
4.1 材料 20
4.1.1 藥品 20
4.1.2 實驗設備 20
4.1.3 菌種來源與培養基 21
4.2 分析方法 22
4.2.1 VOCs的分析方法 22
4.2.2 懸浮系統中生物濃度之量測 22
4.2.3 固定化系統中生物濃度之量測 22
4.3 固定化技術 26
4.4 瓶杯試驗 26
4.4.1 菌體生長與甲苯及三氯乙烯的關係 26
4.4.2 三氯乙烯對甲苯的競爭行為探討 26
4.4.3甲苯對三氯乙烯的競爭行為探討 27
4.4.4 pH與溫度效應的影響 27
4.4.5 金屬效應的影響 27
4.5 動力參數的求取 30
4.5.1 生長係數(Y)與轉換能力(Tc) 30
4.5.2 懸浮系統中最大降解速率(Vm,S, Vm,C) 與 Michaelis-Menten 常數 (Ks, Kc) 的量測 30
4.5.3固定化系統中最大降解速率(Vm,S, Vm,C) 與 Michaelis-Menten 常數 (Ks, Kc) 的量測 31
4.5.4 質量傳送係數(KLa,S, KLa,C)的量測 31
4.6 連續批次反應器的建立 32
4.7 電子顯微鏡觀察 32
第五章 結果與討論 35
5.1菌體生長與甲苯及三氯乙烯的關係 35
5.2 溫度與pH值對三氯乙烯及甲苯降解之影響 36
5.3 甲苯與三氯乙烯間的競爭抑制 41
5.4 動力參數求取 44
5.4.1 生長係數(Y)與轉化能力(Tc) 44
5.4.2 最大降解速率(Vm,S , Vm,C)與Michaelis-Menten常數(KS , KC) 46
5.5 金屬效應對甲苯及三氯乙烯共代謝之影響 55
5.5.1 金屬毒性評估 55
5.5.2 金屬效應經驗模式的建立 58
5.6 連續批次反應器 65
5.6.1 進流時間對三氯乙烯及甲苯去除效率的影響 65
5.5.2 進流甲苯濃度變化對三氯乙烯及甲苯去除效率的影響 72
5.6.3進流三氯乙烯濃度變化對三氯乙烯及甲苯去除效率的影響 72
5.6.4 連續批次反應器對三氯乙烯及甲苯去除能力探討 79
5.6.5 簡單模式 85
5.7 金屬效應的影響 86
5.8 電子顯微鏡觀察 87
第六章 結 論 94
參考文獻 96

Adamson, D.T. and G.F. Parkin. ( 2000). Impact of mixtures of chlorinated aliphatic hydrocarbons on high-rate, tetrachloroethene-dechlorinating enrichment culture. Environmental Science and Technology. 34:1959-1965.
Alberto Cabrero, Sara Fernandez, Fernando Mirada, Julian Garcia. (1998). Effects of copper and zinc on the activated sludge bacteria growth kinetics. WaERt. Research. 32: 1355-1362.
Alvarez-Cohen,L., McCarty, P.L. (1991). A Cometabolic Biotransformation Model for Halogenated Aliphatic Compounds Exhibiting Product Toxicity. Environmental Science and Technology. 25: 1381-1387.
Alvarez-Cohen, L., McCarty, P.L. (1991). Product Toxicity and Cometabolic Competitive Inhibition Modeling of Chlorofrom and Trichloroethylene Transformation by Methanotrophic Resting Cells. Applied and Environmental Microbiology. 57: 1031-1037.
Alvarez-Cohen, L., McCarty, P.L. (1991). Effects of toxicity, aeration, and reductant supply on trichloroethylene transformation by a mixed methanotrophic culture. Applied and Environmental Microbiology. 57: 228-235.
Alvarez-Cohen, L.,McCarty, P.L. (1991). Two-Stage Dispersed-Growth Treatment of Halogenated Aliphatic Compounds by Cometabolism. Environmental Science and Technology. 25: 1387-1393.
Alvarez-Cohen, L. , P.L. McCarty, E. Boulygina, R.S. Hanson, G.A.Brusseau, and H.C. Tsien. (1992). Characterization of a methane-utilizing bacterium from a bacterial consortium that rapidly degrades trichloroethylene and chloroform. Appl. Environ. Microbiol. 58:1886-1893.
Amor L., C. Kennes, M. C. Veiga. (2001). Kinetics of inhibition in the biodegradation of monoaromatic hydrocarbons in presence of heavy metals. Bioresource Technology. 78: 181-185.
Anders, M.W., and L.R. Pohl.(1985). Halogenated alkanes. In: Bioactivation of foreign compound (Edited by M.W. Anders). Academic Press, New York, USA.
Andrews, J.F., (1968). Inhibitory Growth of Bacterial Cultures, Biotechnol. Bioeng. 44: 707-723.
Arciero, D.T. Vanelli, T.M. Logan, and A.B. Hooper. (1989). Degradation of trichloroethylene by the ammonia-oxidizing bacterium Nitrosomas europaea. Biochem. Biophys. Res. Commun.159:640-643.
Arora, M., Brath, E., Umbers, M. (1985). Technology evaluation of sequencing batch reactors. J. Water. Pollu. Control. Fed. 57: 867-871
Barker J. F., Tessman J. S., Plotz P. E. and Reinhard M. (1989). The organic geochemistry of a sanitary landfill leachate plume. Journal of Contaminant Hydrology. 1: 171-189.
Broholm, K., Christensen T.H., Jensen, B.K. (1992). Modelling TCE Degradation by a Mixed Culture of Methane-Oxidizing Bacteria. Water Research, 26, pp.1177-1185.
Broholm, K., Christensen T.H., Jensen, B.K. Jensen. (1993), Different abilities of eight mixed cultures of methane-oxidizing bacteria to degrade TCE. Water Res. 27:215-224.
Brown, R., Jarvis, K. Hyland, K. (1989). Protein measurement using bicinchoninic acid: elimination of interfering substrates. Anal. Biochem. 180:136-139.
Chang, M.K., T. C. Voice, and C. S. Criddle. (1993). Kinetics of competitive inhibition and cometabolism in the biodegradation of benzene, toluene, and p-xylene by two pseudomonas isolates. Biotechnology and Bioengineering. 41, 1057-1065.
Chang, H.L., Alvarez-Cohen, L. (1995). Model for the Cometabolic Biodegradation of Chlorinated Organics. Environmental Science and Technolog. 29: 2357-2367.
Chang, H.L., Alvarez-Cohen, L. (1995). Transformation Capacities of Chlorinated Organics by Mixed Cultures Enriched on Methane, Propane, Toluene, or Phenol. Biotechnology and Bioengineering. 45: 440-449.
Chang, S.Y., Huang, J.C., and Liu, Y.C. (1986). Effects of Cd(II) and Cu(II) on a biofilm system. J. Envir. Engng., 112:94-104
Chang, W.K. (1996), Kinetics characterization of cometabolizing communities and adaptation to nongrowth substrate. Ph. D. Thesis, Michigan State University, USA.
Cookson, J. T., (1995). Bioremediation Engineering: Design and Application. McGraw-Hill, Inc., New York.
Costura R. K., Alvarez, P. J. J., (2000). Expression and longevity of toluene dioxygenase in Pseudomonas putida F1 included at different dissolved oxygen concentrations. Water Res. 34: 3014-3018.
Coyle, C.G., G.F. Parkin, and D.T. Gibson. (1993). Aerobic, phenol-induced TCE degradation in completely mixed, continuous-culture reactors. Biodegradation 4:59-69.
Criddle, C.S. (1993). The Kinetics of Cometaboloism. Biotechnology and Bioengineering. 41: 1048-1056.
Dabrock, B., J. Riedel, J. Bertam, and G. Gottschalk. (1992). Isopropylbenzene (cumene)- a new substrate for the isolation of trichloroethylene- degrading bacteria. Arch. Microbiol. 158:9-13
Deolman, P., Jansen, E., Muchels, M., Van Til, M. (1994). Effects of heavy metals in soil on microbial diversity and activity as shown by the sensitivity-resistance index, an ecologically parameter. Biol. Fert. Soils. 17: 177-184
Edwards, V.H., (1970). The Influence of High Substrate Concentrations on Microbial Kinetics, Biotechnol. Bioeng., 27: 679-687.
Ensign, S.A., M.R. Hyman, and D.J. Arp. (1992). Cometabolic degradation of chlorinated alkenes by alkene monooxygenase in a propylene-grown Xanthobacter strain. Appl. Environ. Microbiol. 58:3038-3046
Ewers, J., D. Freier-Schroder, and H.-J. Knackmuss. (1990). Selection of trichloroethylene (TCE)degrading bacteria that resist inactivation by TCE. Arch. Microbiol. 154:410-413.
Ely, R.L., Williamson, K.J., Guenther, R.B., Hyman, M.R., Arp, D.J. (1994). A Cometabolic Kinetics Model Incorporating Enzyme Inhibition, Inactivation, and Recovery: I. Model Development, Analysis, and Testing. Biotechnology and Bioengineering. 46: 218-231
Fan, A. M. (1988). Trichloroethylene: water contamination and health risk assessment. Reviews of environmental contamination and toxicology. Springer-Verlag, New York. 55-92.
Fan, S., and K.M. Scow. (1993). Biodegradation of trichlororthylene and toluene by indigenous microbial population in soil. Appl. Microbiol. Environ. 59:1911-1918.
Fernandes, L., McKeyes, E., Warith, M., and Barrington, S. (1991). Treatment of liquid swine manure in a sequencing batch reactor under aerobic and anoxic conditions. Canadian Agricultural Engineering. 33: 373-379.
Fogel, M.M., A.R. Taddeo, and S. Fogel. (1986). Biodegradation of chlorinated ethenes by a methane utilizing mixed culture. Appl. Environ. Microbiol. 51:720-724
Folsom, B.R., P.J. Chapman, and P.H, Pritchard. (1990). Phenol and trichloroethylene degradation by Pseudomonas cepacia G4: Kinetics and interactions between substrates. Appl. Environ. Microbiol. 56:1279-1285.
Gadd, G. M., Griffiths., A. J. (1978). Microorganism and heavy metals. Microbiol. Ecol. 4: 303-317.
Grady, C. P. L., Daigger, G., and Lim, H. (1999). Biological wastewater treatment. Marcel Dekker, Inc., New York, NY.
Guo, Gia-Luen. Tseng, Dyi-Hwa. Huang, Shir-Ly. (1998). Critical review and evaluation cometabolic degradation of chlorinated aliphatic hydrocarbons. Journal of Environmental Engineering in NCU. 5: 5-24.
Harker, A.R., and Y. Kim. (1990). Trichloroethylene degradation by two independent aromatic degrading pathways in Alcaligenes eutrophus JMP134. Appl. Environ. Microbiol. 56:1179-1181.
Hartz K. E., Zane A. T. and Bhagat S. K. (1985). The effect of selected metals and water hardness on the oxygen uptake of activated sludge. J. Wat. Pollut. Control. Fed. 57: 942-947.
IARC. (1995), IARC monographs on the evaluation of carcinogenic risks to humans: dry cleaning, some chlorinated solvents and other industrial chemicals. Vol. 63. Lyon, France: IARC.
Ichijo, H., Nagasawa, J., and Yamauchi, A. (1990). Immobilization of biocatalysts with poly(vinyl alcohol) supports. J. Biotechnol. 14: 169-178.
Imai, K., Shiomi, T., Uchida, K., and Miya, M. (1986). Immobilization of enzyme into poly(vinyl alcohol) membrane. Biotechnol. Bioeng. 28: 1721-1726.
Irvine, R., and Ketchum, L. (1989). Sequencing batch biological reactors for biological wastewater treatment. CRC. Crit. Rev. Environ. Control. 51:255-261.
Jahng, D., and T.K. Wood. (1994). Trichoroethlyene and chloroform degradation by a recombinant pseudomonad expressing soluble methane monooxygenase from Methylosinus trichosporium OB3b. Appl. Environ. Microbiol. 60:2473-2482.
Jain, M.K., and C.S. Criddle. (1995). Metabolism and cometabolism of halogenated C-1 and C-2 hydrocarbons. In: Biotransformations: Microbial degradation of health-ris compounds (Edited by V. P. Singh). Progress in industrial microbiology, Vol 32. Elsevier Science b. v., The Netherlands.
Ketchum, L., Irvine, R., Liao, P. (1979). First cost analysis of sequencing batch biological reactor. J. Water. Pollu. Control. Fed. 51: 288-291.
Koh, S.-C., J.P. Bowman, and G.S. Sayler. (1993). Soluble methane monooxygenase production and trichloroethylene degradation by a type I methanotroph, Methylomonas methanica 68-1. Appl. Environ. Microbiol. 59:960-967.
Leadbetter, ER, and Foster, JW (1959) Incorporation of molecular oxygen in bacterial cells utilizing hydrocarbons for growth. Nature. 184:1428-30.
Li, F., Tan, T. C. (1994). Monitoring of BOD in the presence of heavy metals ions using a poly (4-vinylpyridine) coated microbial sensor. Biosens. Bioelectron. 9: 445-455.
Li, S., and L.P. Wackeet. (1992). Trichloroethylene oxidation by toluene dioxygenase. Biochem. Biophys. Res. Comm. 185:443-451.
Little, C.D., C.D. Fraley, M.P. McCann, and A. Matin. (1991). Use of bacterial stress promoters to induce biodegradation under conditions of environmental stress. In: On-site Bioreclamation(Edited by R.E. Hinchee, and R.F. Olfenbuttel). Butterworth-Heinemann, Boston, USA.
Luong, J. H. T. (1987). Generalization of Monod kinetics for analysis of growth data with substrate inhibition. Biotechnol. Bioeng. 29:242-248
Mackay, D.M., and J.A. Cherry. (1989). Groundwater Contamination: Pump-and-Treat Remediation, Environmental Science and Technolog., 23: 630-636.
Mars, A.E., J. Houwing, J. Dolfing, and D.B. Janssen. (1996). Degradation of toluene and trichloroethylene by Burkholderia cepacia G4 in growth-limited fed-batch culture. Appl. Environ. Microbiol. 62:886-891.
Michael, L.S. and K. Fikret, (1992). Bioprocess Engineering, Prentice-Hall Eds. 169.
Monod, J., (1949). The Growth of Bacterial Cultures," J. Ann. Rev. Microbiol. 3: 371-375.
Morgan, G. B., and Lackey, J. B. (1958). BOD determination in wastes containing chelated copper and chromium. Sewage and Ind. Wastes. 30: 283-286.
Mu, D.Y., and K.M. Scow. (1994). Effect of trichloroethylene (TCE) and toluene concentrations on TCE and toluene biodegradation and the population density of TCE and toluene degraders in soil. Appl. Environ. Microbiol. 60:2661-2665.
Murray, W. D. and Richardson, M., (1993). Progress Toward the Biological Treatment of C1 and C2 Halogenated Hydrocarbons. Critical Reviews in Environmental Science and technology, 23: 195-217.
Oldenhuis, R., R.L.J.M., Vink, D.B. Janssen, and B. Witholt. (1989). Degradation of chlorinated aliphatic hydrocarbons by Methylosinus trichosporium OB3b expressing soluble methane monooxygenase. Appl. Environ. Microbiol. 55:2819-2826.
Oldenhuis, R. (1992). Microbial degradation of chlorinated compounds. Ph. D. Thesis, University of Groningen, The Netherlands.
Oldenhuis, R., J.Y. Oedzes, J.J. van der Waarde, and D.B. Janssen. (1991). Kinetics of chlorinated hydrocarbon degradation by Methylosinus trichosporium OB3b and toxicity of trichloroethylene. Appl. Environ. Microbiol. 57:7-14.
Quan, X. C., Shi, H. C., Wang, J. L., Qian Yi. (2003). Biodegradation of 2,4-dichlorophenol in SBR augmented with immobilized mixed culture. Chemosphere. 50: 1069-1074.
Rasche, M.E., M.R. Hyman, and D.J. Arp. (1991). Factors limiting aliphatic chlorocarbon degradation by Nitrosomonas europaea: Cometabolic inactivation of ammonia monooxygenase and substrate specificity. Appl. Environ. Microbiol. 57:1986-2994.
Reij, M.W., J. Kieboom, J.A.M. de Bont, and S. Hartmans. (1995). Continuous degradation of trichloroethylene by Xanthobacter sp. Atrain Py2 during on propene. Appl. Environ. Microbiol. 61:2936-2942.
Roberts, P.V., L. Semprini, G. D. Hopkins, D. Grbic-Galic, P. L. McCarty, and Martin Reinhard (1989). In-Situ Aquifer Restoration of Chlorinated Aliphatics by Methanotrophic Bacteria. U.S.E.P.A., #CR-812220, pp.1-214.
Saez, P.B., Rittmann, B.E. (1991). Biodegradation kinetics of 4-chlorophenol, an inhibitory cometabolite. Research Journal of the Water Pollution Control Federation. 63: 838-847.
Schmidt, S.K., Simpkins, S., Alexander, M. (1985). Models for the Kinetics of Biodegradation of Organic Compounds Not Supporting Growth. Applied and Environmental Microbiology. 50: 323-331.
Speitel (jr), G.E., R.C. Thompson, and D. Weismann. (1993). Biodegradation kinetics of Methylosinus trichosporium OB3b at low concentrations of chloroform in the presence and absence of enzyme competition by methane. Water Res. 27:15-24.
Speitel, G. E. and Segar, R. L., (1995). Cometabolism in Biofilm Reactors. Wat. Sci. Tech. 31: 1-14.
Sturchio, N.C., J.L. Clausen, L.J. Heraty, L. Huang, B.D. Holt, and T.A. Abrajano, Jr. (1998). Chlorine Isotope Investigation of Natural Attenuation of Trichloroethene in an Aerobic Aquifer, Environmental Science and Technology, 32: 3037-3042.
Tschantz, M.F., J.P. Bowman, T.L. Donaldson, P.R. Biekowski, J.M. Strong-Gunderson, A.V. Palumbo, S.E. Herbes, and G.S. Sayler. (1995). Methanotrophic TCE biodegradation in a multi-stage bioreactor. Environ. Sci. Technol. 29:2073-2082.
Tsien, H.-C., G.A. brusseau, R.S. Hanson, and L.P. Wackett. (1989). Biodegradation of trichloroethylene by Methylosinus trichosporium OB3b. Appl. Environ. Microbiol. 55:3155-3161.
Tseng, D. H., Guo G. L., Chang, C. H., Huang, S. L. (2001). Removal of toluene in gas streams by a fibrous bed trickling filter. Environ. Technol. 22: 39-46.
Uchiyama Hiroo, Osami Yagi, Kazuhito Oguri, Etsuo Kokufuta. (1994). Immobilization of TCE-degrading bacteria, Methylocysis sp. strain M. in different matrices. J. Ferm. Engineering. 77:173-177.
Vannelli, T., M. Logan, D.M. Arciero, and A.B. Hooper. (1990). Degradation of halogenated aliphatic compounds by the ammonia-oxidizing bacterium Nitrosomonas europaea. Appl. Environ. Microbiol. 56:1169-1171.
Wackett, L.P., and D.T. Gibson. (1988). Degradation of trichloroethylene by toluene dioxygenase in whole-cell studies with Pseudomonas putida F1. Appl. Environ. Microbiol. 54:1703-1708.
Wackett, L.P., G.A. Brusseau, S.R., Householdwe, and R.S. Hanson. (1989). Survey of microbial oxygenases: Trichloroethylene degradation by propane-oxidizing bacteria. Appl. Environ. Microbiol. 55:2960-2964.
Wackett, L.P., and S.R., Householdwe. (1989). Toxicity of trichloroethylene to Pseudomonas putida F1 is mediated by toluene dioxygenase. Appl. Environ. Microbiol. 55:2723-2725.
Webb, C. (1989). The roll of cell immobilization in fermentation technology. Aust. J. Biotechnol. 3: 50-62.
Westrick, J. T., and J.W. Mello, and R. F. Thomas. (1984). The groundwater supply survey. J. Am. Water Work Assoc. 5: 52-59.
Wilcox, D.W., R.L. Autenrieth, J.S. Bonner. (1995). Propane-induced biodegradation of vapor phase trichloroethylene. Biotechnol. Bioeng. 46:333-342.
Winter, R.B., K.-M. Yen, and B.D. Ensley. (1989). Efficient degradation of trichloroethylene by a recombinant Escherichia coil. Bio/Technology. 7:282-285.
Wood, J. M., Wang, H. K., (1983). Microbial resistance to heavy metals. Environ. Sci. Technol. 17: 582-590.
Zümriye Aksu, Gültac Bülbül. (1999). Determination of the effective diffusion coefficient of phenol in Ca-alginate-immobilized P. putida beads. Enzyme and Microbial Technology, 25, 344-348.
Zylstra, G.J., L.P. Wackett, and D.T. Gibson. (1989). Trichloroethylene degradation by Escherichia coil containing the clond Pseudomonas Putida F1 toluene dioxygenase genes. Appl. Environ. Microbiol. 55:3162-3166.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔