(3.237.20.246) 您好!臺灣時間:2021/04/15 13:42
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:許承先
研究生(外文):Hsu, Cheng-hsien
論文名稱:常溫型燃料電池膜電極組體之製程及數學模擬的研究
論文名稱(外文):Study of MEA process and simulation for PEM fuel cells
指導教授:萬其超萬其超引用關係
學位類別:博士
校院名稱:國立清華大學
系所名稱:化學工程學系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2003
畢業學年度:91
語文別:英文
論文頁數:105
中文關鍵詞:燃料電池膜電極組體數學模擬
外文關鍵詞:PEMFCMEANAFIONSIMULATION
相關次數:
  • 被引用被引用:2
  • 點閱點閱:139
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:31
  • 收藏至我的研究室書目清單書目收藏:0
高分子電解質膜燃料電池(PEMFC)又稱為常溫型燃料電池,本論文係針對其膜電極組體(MEA)從實驗與數學兩方面來進行研究。在實驗方面,利用兩種膜電極組體的製程來明瞭各製程在量產考量中的特性和困難處,以及影響電池性能的因素,此兩種製程均由薄層觸媒技術延伸而來。為瞭解觸媒層與電解質膜之間的介面,以及電解質膜濕潤膨脹的特性,利用描述一維定溫穩態的數學模式來幫助學習多孔電極結構中的水輸送現象與電解質膜的含水量,此數學模式亦包括陰極觸媒層模型,用來量測觸媒在陰極觸媒層中的有效利用率。
在實驗過程中,Nafion膜會不均勻膨脹致使薄層觸媒不易於電解質膜表面沉積,為減緩此不均勻膨脹導致的沉積困擾,我們利用電解質膜的膨脹特性,發展出一個嶄新的製程,製程中先將電解質膜以溶劑完全均勻膨脹,其後再直接用噴塗或刮刀塗佈的方式,將觸媒漿料沉積於電解質膜表面,此時電解質膜就無不均勻膨脹的現象發生,如此製作的MEA,其電池性能表現亦較商業製程的產品為優。另一個實驗,以轉印製程製作的MEA來作為對照,利用分析電流電壓性能曲線、動力學參數、電觸媒活性表面和交流阻抗分析來比較此兩種製程製作的MEA性能。
最後,數學模擬的預測值會與實驗數據在特定條件下進行比對,而在模擬過程中,數學模式的一些輸入參數,如電極孔隙度、反應物流量比例係數、觸媒層厚度和電流密度等,會與實驗數據進行關聯性處理。
Experimental and mathematical studies of membrane electrode assembly (MEA) for polymer electrolyte membrane fuel cell (PEMFC) have been conducted. Two MEA fabrication processes derived from the thin-film technique were used to realize the feature as well as to determine possible difficulty in mass production and effects on cell performance. To help us understand the interface between the catalyst layer and the membrane, as well as the membrane expansion when hydration occurs, an isothermal, one-dimensional, steady state model was established to understand the water transport phenomenon in the porous structure of the electrodes and the water content in the membrane. The cathode catalyst layer model was also included to measure the utilization efficiency of the catalyst.
In practice, the swelling of the Nafion film always makes it very difficult to deposit thin catalyst layers on the membrane electrolyte. An innovative process has been developed which utilizes the expansion of Nafion film in the deposition so as to mitigate this problem. When the film is fully expanded, we can apply catalyst ink onto the membrane directly by means of spraying or blade pasting without the concern of swelling. The results of the so-fabricated MEA show good performance relative to commercial product. A decalcomania process for MEA fabrication was also used as the other experiment. Kinetic analysis of the electro-active surface including ac impedance was executed for the two processes.
The simulation of the model with different input parameters, such as the electrode porosity, the stoichiometric coefficient for reactants, the catalyst thickness, and the current density, were correlated with the experimental data.
Chapter 1 Introduction
1-1 The Development Background of Fuel Cells 1
1-2 Principle and Construction of PEM Fuel Cells 6
1-2-1 The Polymer Electrolyte Membrane 6
1-2-2 The Membrane/Electrode Assembly 9
1-2-3 The Gas Diffusion Layers 11
1-2-4 The Flow Field Plates and Current Collectors 12
1-3 Mathematical Models of PEM Fuel Cells 13
1-3-1 One-Dimensional Models 13
1-3-2 Two-Dimensional Models 15
1-3-3 Water Management Models and Others 15
1-4 Progress of the MEA Development 16
1-4-1 Designs of the MEA Fabrication Process 17
1-4-2 Mass Production Techniques for MEAs 20
1-5 Purpose and Scope of this Study 21
Chapter 2 Mathematical Simulation of PEM Fuel Cells
2-1 General Description 23
2-2 Mathematical Models 27
2-2-1 Overall Mass Balance 27
2-2-2 Anode Gas Diffusion Layer 29
2-2-3 Cathode Gas Diffusion Layer 30
2-2-4 Water Transport in Membrane 31
2-2-5 Cathode Catalyst Layer 33
2-2-6 Solution Techniques 37
2-3 Results and Discussion 38
2-4 Conclusions 59
Symbols and Notations 62
Chapter 3 An Innovative MEA Process Using the Expansion of
Nafion Film
3-1 Introduction 64
3-2 Experimental 66
3-3 Results and Discussion 69
3-4 Conclusions 81
Chapter 4 Comparison and Simulation of Two Different Thin-film
MEAs
4-1 Introduction 82
4-2 Experimental 83
4-3 Results and Discussion 86
4-4 Conclusions 96
Chapter 5 Conclusions 97
References 99
1.J. H. Hirschenhofer, D. B. Stauffer, R. R. Engleman, and M. G. Klett, Fuel Cell Handbook 4th Edition, U.S. Department of Commerce, Springfield, VA, p1-1 (1998).
2.Keith Kozloff, “Power to choose”, Frontiers of Sustainability, World Resources Institute, Island Press (1997).
3.K. Joon, “Fuel cells — a 21st century power system”, J. Power Sources, 71, p12-18 (1998).
4.S. Thomas, and M. Zalbowitz, Fuel Cells-Green Power, Los Alamos National Laboratory, New Mexico, p21-23 (2002).
5.S. G. Chalk, J. Milliken, J. F. Miller, and S.R. Venkateswaran, “The US Department of Energy — investing in clean transport”, J. Power Sources, 71, p26-35 (1998).
6.W. T. Grubb, Proceedings of the 11th Annual Battery Research and Development Conference, PSC Publications Committee, Red Bank, NJ, p5 (1957); U.S. Patent No. 2,913,511 (1959).
7.M. Cappadonia, J. W. Erning, S.M. S. Niaki, and U. Stimming, “Conductance of Nafion 117 membranes as a function of temperature and water content”, Solid State Ionics, 77, p65-69 (1995).
8.J. Divisek, M. Eikerling, V. Mazin, H. Schmitz, U. Stimming, and Y. M. Volfkovich, “A Study of Capillary Porous Structure and Sorption Properties of Nafion Proton-Exchange Membranes Swollen in Water”, J. Electrochem. Soc., 145, 2677 (1998).
9.M. Watanabe, H. Igarashi, H. Uchida, and F. Hirasawa, “Experimental analysis of water behavior in Nafion electrolyte under fuel cell operation”, J. Electroanalytical Chemistry, 399, p239-341 (1995).
10.F. N. Buchi, D. Tran, and S. Srinivasan, “Performance of PEM Fuel Cells without External Humidification of the Reactant Gases”, Proceedings of the First International Symposium on Proton Conducting Membrane Fuel Cells I, The Electrochemical Society, Inc., Pennington, NJ, p226 (1995).
11.W. H. Buck, “Advanced Proton Exchange Membrane Development for High Performance Fuel Cells”, Proceedings of the Power Sources Conference (37th), Army Research Lab., Fort Monmouth, NJ, p104 (1996).
12.D. E. Curtin and M. A. Watkins, “High Volume, Low Cost Manufacturing Process for Nafion Membranes”, 2002 Fuel Cell Seminar, Palm Springs, CA, p834 (2002).
13.T. A. Zawodzinski and J. Milliken, “Recent Progress on the Development of High Temperature Polymer Membranes for Fuel Cells”, 2002 Fuel Cell Seminar, Palm Springs, CA, p870 (2002).
14.J. A. Kolde, B. Bahar, M. S. Wilson, T. A. Zawodzinski, and S. Gottesfeld, “Advanced Composite Polymer Electrolyte Fuel Cell Membranes”, Proceedings of the First International Symposium on Proton Conducting Membrane Fuel Cells I, The Electrochemical Society, Inc., Pennington, NJ, p193 (1995).
15.S. E. Yen, A. Kindler, and A. Yavrouian, “Low Cost Membranes for PEM Fuel Cells”, Proceedings of the Power Sources Conference (38th), U.S. Department of Commerce, Springfield, VA, p469 (1998).
16.M. Mizuhata, K. Yasuda, K. Oguro, and H. Takenaka, “Preparation of Gas Diffusion Electrode with Highly-active Catalyst for PEFCs”, Proceedings of the First International Symposium on Proton Conducting Membrane Fuel Cells I, The Electrochemical Society, Inc., Pennington, NJ, p24 (1995).
17.R. Breitkopf, J. Hwang, F. Maniei, A. Hunt, and P. Faguy, “Fabricating Pt-containing Electrocatalyst Layers for PEMFC Applications using Combustion Chemical Vapor Deposition”, 2002 Fuel Cell Seminar, Palm Springs, CA, p850 (2002).
18.G. Hards, J. Buchanan, T. Ralph, C. de Rouffignac, J. Rowe, and D. Thompsett, “New Catalyst and MEA Developments for High Performance PEM Fuel Cells”, 2002 Fuel Cell Seminar, Palm Springs, CA, p854 (2002).
19.S. Park, J. Cho, M. Min, K. Cho, and H. Kim, “X-ray Absorption Spectroscopic Study of Pt-Transition Metal Alloy Electrocatalysts for Fuel Cell”, The Second International Fuel Cell Workshop, Yamanashi, Japan, p155 (1998).
20.T. Toda, H. Igarashi, and M. Watanabe, “Research on Cathode Catalysts for Polymer Electrolyte Fuel Cells”, The Second International Fuel Cell Workshop, Yamanashi, Japan, p158 (1998).
21.E. Reddington, A. Sapienza, B. Gurau, R. Viswanathan, S. Sarangapani, E. S. Smotkin, and T. E. Mallouk, “Combinatorial Electrochemistry: A Highly Parallel, Optical Screening Method for Discovery of Better Electrocatalysts”, Science, 280, p1735-1737 (1998).
22.L. Giorgi, E. Antolini, A. Pozio, and E. Passalacqua, “Influence of the PTFE content in the diffusion layer of low-Pt loading electrodes for polymer electrolyte fuel cells”, Electrochimica Acta, 43, p3675-3680 (1998).
23.D. L. Wood, P. M. Wilde, M. Maendle, and M. Murata, “Correlation of gas diffusion layer physical properties and PEMFC performance”, 2002 Fuel Cell Seminar, Palm Springs, CA, p41 (2002).
24.J. U. Heo, H. K. Lee, and T. H. Lee, “Effect of the gas diffusion layer thickness of the PEM fuel cells and the application of simulation”, 2002 Fuel Cell Seminar, Palm Springs, CA, p81 (2002).
25.V. Banhardt, G. Rinn, and H. Neuweger, “Development of mass production technologies for advanced graphite-composite bipolar plates”, 2002 Fuel Cell Seminar, Palm Springs, CA, p66 (2002).
26.J. S. Yi and T. V. Nguyen, “The effect of the flow distributor on the performance of PEM fuel cells”, Proceedings of the First International Symposium on Proton Conducting Membrane Fuel Cells I, The Electrochemical Society, Inc., Pennington, NJ, p66 (1995).
27.D. M. Bernardi and M. W. Verbrugge, “Mathematical Model of Gas Diffusion Electrode Bonded to a Polymer Electrolyte”, AIChE J., 37, p1151 (1991).
28.T. E. Springer, T. A. Zawodzinski, and S. Gottesfeld, “Polymer Electrolyte Fuel Cell Model”, J. Electrochem. Soc., 138, p2334 (1991).
29.V. Gurau, F. Barbir, and H. Liu, “An Analytical Solution of a Half-Cell Model for PEM Fuel Cells”, J. Electrochem. Soc., 147, p2468-2477 (2000).
30.T. V. Nguyen and R. E. White, “A Water and Heat Management Model for Proton-Exchange-Membrane Fuel Cells”, J. Electrochem. Soc., 140, p2178 (1993).
31.T. F. Fuller and J. Newman, “Water and Thermal Management in Solid-Polymer-Electrolyte Fuel Cells”, J. Electrochem. Soc., 140, p1218 (1993).
32.M. Wohr, K. Bolwin, W. Schnurnberger, M. Fischer, W. Neubrand, and G. Eigenberger, “Dynamic Modeling and Simulation of a Polymer Membrane Fuel Cell Including Mass Transport Limitation”, Int. J. Hydrogen Energy, 23, p213-218 (1998).
33.V. Gurau, H. Liu, and S. Kakac, “Two-Dimensional Model for Proton Exchange Membrane Fuel Cells”, AIChE J., 44, p2410 (1998).
34.S. Um, C. Y. Wang, and K. S. Chen, “Computational Fluid Dynamics Modeling of Proton Exchange Membrane Fuel Cells”, J. Electrochem. Soc., 147, p4485-4493 (2000).
35.T. Okada, G. Xie, and M. Meeg, “Simulation for water management in membranes for polymer electrolyte fuel cells”, Electrochimica Acta, 43, p2141-2155 (1998).
36.T. Okada, “Theory for water management in membranes for polymer electrolyte fuel cells Part 1. The effect of impurity ions at the anode side on the membrane performances”, J. Electroanalytical Chemistry, 465, p1-17 (1999).
37.T. Okada, “Theory for water management in membranes for polymer electrolyte fuel cells Part 2. The effect of impurity ions at the cathode side on the membrane performances”, J. Electroanalytical Chemistry, 465, p18-29 (1999).
38.C. Marr and X. Li, “Composition and performance modeling of catalyst layer in a proton exchange membrane fuel cell”, J. Power Sources, 77, p17-27 (1999).
39.J. J. Baschuk and X. Li, “Modeling of polymer electrolyte membrane fuel cells with variable degrees of water flooding”, J. Power Sources, 86, p181-196 (2000).
40.K. Prater, “The renaissance of the solid polymer fuel cell”, J. Power Sources, 29, p239-250 (1990).
41.T. R. Ralph, “Proton Exchange Membrane Fuel Cells progress in cost reduction of the key components”, Platinum Metals Rev., 41, p102-113 (1997).
42.V. A. Paganin, E. A. Ticianelli, and E. R. Gonzalez, “Fabrication and evaluation of electrodes for polymer electrolyte fuel cells”, Proceedings of the First International Symposium on Proton Conducting Membrane Fuel Cells I, The Electrochemical Society, Inc., Pennington, NJ, p102 (1995).
43.M. S. Wilson and S. Gottesfeld, “High Performance Catalyzed Membranes of Ultra-low Pt Loadings for Polymer Electrolyte Fuel Cells”, J. Electrochem. Soc., 139, L28 (1992).
44.M. S. Wilson, J. A. Valerio, and S. Gottesfeld, “Low platinum loading electrodes for polymer electrolyte fuel cells fabricated using thermoplastic ionomers”, Electrochimica Acta, 40, p355-363 (1995).
45.Y. Chun, C. Kim, D. Peck, and D. Shin, “Performance of polymer electrolyte membrane fuel cell with thin film catalyst electrodes”, J. Power Sources, 71, p174-178 (1998).
46.S. Ahn, Y. Lee, U. Jeon, E. A. Cho, H. Y. Ha, S. Hong, and I. Oh, “Fabrication of membrane-electrode assemblies for the polymer electrolyte membrane fuel cell using the membrane on electrode (MOE) technique”, 2002 Fuel Cell Seminar, Palm Springs, CA, p109 (2002).
47.C. Zawodzinski, M. S. Wilson, and S. Gottesfeld, “PEM fuel cell stack development based on membrane-electrode assemblies of ultra-low platinum loadings”, Proceedings of the First International Symposium on Proton Conducting Membrane Fuel Cells I, The Electrochemical Society, Inc., Pennington, NJ, p57 (1995).
48.M. Wakizoe, O. A. Velev, and S. Srinivasan, “Analysis of proton exchange membrane fuel cell performance with alternate membranes”, Electrochimica Acta, 40, p335-344 (1995).
49.M. S. Wilson, “Membrane catalyst layer for fuel cells”, United States Patent, Patent Number 5,211,984 (1993).
50.R. B. Bird, W. E. Stewart, and E. N. Lightfoot, “Temperature and pressure dependence of mass diffusivity”, Transport Phenomena, John Eiley & Sons, NY, p505-508 (1960).
51.I. D. Raistrick, “Electrode assembly for use in a solid polymer electrolyte fuel cell”, United States Patent, Patent Number 4,876,115 (1989).
52.M. S. Wilson, and S. Gottesfeld, ”Thin-film catalyst layers for polymer electrolyte fuel cell electrodes”, J. Appl. Electrochem., 22, p1 (1992).
53.J. S. Hulett, “Method of making MEA for PEM/SPE fuel cell”, United States Patent, Patent Number 6,074,692 (2000).
54.S. J. Lee, S. Mukerjee, J. McBreen, Y. W. Rho, Y. T. Kho, and T. H. Lee, “Effects of Nafion impregnation on performances of PEMFC electrodes”, Electrochimica Acta, 43, p3693-3701 (1998).
55.R. L. Borup and N. E. Vanderborgh, “Characterization of PEM fuel cell membrane-electrode-assemblies by electrochemical methods and microanalysis”, Proceedings of the First International Symposium on Proton Conducting Membrane Fuel Cells I, The Electrochemical Society, Inc., Pennington, NJ, p167 (1995).
56.T. Biegler, D. A. J. Rand, and R. Woods, “Limiting oxygen coverage on platinized platinum; relevance to determination of real platinum area by hydrogen adsorption”, J. Electroanal. Chem., 29, p269-277 (1971).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 蔡世澤(2000)。台灣糖尿病照護現況與省思。臨床醫學,45(5),316-320。
2. 黃久美(1995)。糖尿病患者家庭支持、醫病關係、疾病壓力與遵從行為之相關性研究。輔英學報,15,27-52。
3. 蔡佩珊、胡琪容(1998)。冠狀動脈繞道手術病人出院後身體恢復及心理社會調適情形與相關因素之探討。長庚護理,8(4),1-12。
4. 龍紀萱(1997)。尿毒症患者等待腎臟移植期間的心理社會適應之研究。當代社會工作學刊,91-118。
5. 蕭淑貞 (1993a)。糖尿病人之心理社會適應與生活品質。護理新象,3(4),181-188。
6. 謝昌勳、洪乙仁(2000)。糖尿病的最新診斷標準與分類:美國糖尿學會1997年報告。國防醫學,30(6),467-473。
7. 張峰紫、邱啟潤、辛賜璋、蔡瑞熊(1987)。糖尿病患者的家庭支持與其認知、態度、遵從行為及糖化血色素控制之研究。護理雜誌,38(3),59-69。
8. 黃鴻基、白璐(1992)。成人生活事件之壓力知覺研究。三軍總醫院醫學研究論文專輯,15,933-952。
9. 胡月娟(1992)。罹患慢性病對病人的衝擊及其相關因素之探討。公共衛生,19(2),207-223。
10. 盧美秀、林秋香(1991)。比較團體衛教和個別衛校對糖尿病人知識態度、行為和血糖變化的影響。護理雜誌,38(4),101-112。
11. 林杏霞(1997)。壓力、危機與調適。社教資料雜誌,225,4-6。
12. 吳令怡、鄭啟源 (2000)。UKPDS英國前瞻性糖尿病研究的意義。國防醫學,30(6),477-482。
13. 沈德昌、謝士明 (1999) 。糖尿病人之性功能障礙。中華民國內分泌暨糖尿病學會會訊,12(2),17-28。
 
系統版面圖檔 系統版面圖檔