跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.80) 您好!臺灣時間:2025/01/26 01:18
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳震豪
研究生(外文):chen chen hao
論文名稱:一鎳(II)錯合物之配位化學二化學教育
論文名稱(外文):一 The Coordination Chemistry of Nickel(II) Complexes 二 Chemical Education
指導教授:鍾崇燊鍾崇燊引用關係
指導教授(外文):C.S.Chung
學位類別:碩士
校院名稱:國立清華大學
系所名稱:化學系
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2003
畢業學年度:91
語文別:中文
論文頁數:144
中文關鍵詞:配位化學
外文關鍵詞:coordination chemistry
相關次數:
  • 被引用被引用:0
  • 點閱點閱:174
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本文參照P. Comba, N.F. Curtis等人,於1986在I.C所首次發表的一篇關於類Cyclam的新大環四胺基錯合物為主體,仿照此新大環四胺基的合成方法,此法為利用模板效應來合成,再更改中心鍵結金屬為鎳二價過渡金屬,合成方法參照第二章的合成方法,因大環四胺基會佔據鎳二價其中四個配位,在大環效應之下其四個鍵結會十分牢固,剩下的第五個氮再配位在中心鍵結金屬上佔據第五個配位,故在水溶液下只剩一個空配位可供反應。
根據動力學觀測速率常數所得到的數據,可以知道觀測速率常數的排列順序為:N3->SCN->Cl->Br->I-,將此順序跟銅二價的取代反應相比發現有不同的排列順序,以銅二價為主的取代因為其軟度較鎳二價為大,故影響反應速率的為軟度,但鎳二價的排列順序是以一價單配位陰離子的鹼度來排列,所以本實驗的取代反應是以鹼度為影響反應的主因;而從LFER與Eyring來看,從LFER的觀點來說以logkf與logKX來做圖可得一直線,斜率接近1時為a態,實驗所得到之數據顯示為介於0.86至0.92之間,且從Eyring的方程式來看其亂度減小表示錯合物為結合態,所以跟之前的推論吻合。
再參照第三章熱力學的部分,從實驗所得到的平衡常數排列順序為N3->SCN->Cl->Br->I-此不但與動力學的排列順序吻合,也跟一價單配位陰離子的鹼度排列順序相同,又再次呼應本取代反應軟度不是主要影響因素,主要影響因素為鹼度,而動力學部分所得到的觀測速率常數可以求得平衡常數,再與熱力學所求得到之平衡常數相比較發現皆有良好的一致性。

According to the inorganic chemistry paper form 1986 by the tetraaza scientist Comba、Curtis, prepared the new likely tetraazacyclotetradecane(cyclam) by template method. The new complexes was replaced the central metal copper(II) to nickel(II). The detail prepared method showed on the second section. It was known that the new complexes of likely tetraazacyclotetradecane(cyclam) was likely cyclam. It occupy the four site of nickel(II) ion then it was two site of nickel(II) ion. The new complexes was the pentaamime on the carbon. The pentaamine was occupied the five site on the nickel(II) ion, so it was only one coordinated site that could be coordinated under aqua solution.
By the kinetic data, we were known that the kinetic observed rate constants was followed the order:N3->SCN->Cl->Br->I-. It is different that the copper(II) substitution reaction by monodentate lignads.It was show the basicities order. From the LFER and Eyring equation we was going know transition state by substitution reaction under aqua solution. A plot of log kf to logKX that was show the slop by LFER method. The slop showed nearly the 1, It is known that the slop nearly the 1 under changing the entire group meaning the transition state nearly the Ia type. Another way by Eyring equation that was showed the decreasing entropy by meaning the transition state was nearly Ia type, cause the Ia was showed the decreasing entropy.
By thermodynamic data, we were known that the equilibrium constants was followed the order:N3->SCN->Cl->Br->I-. It was compared to kinetic data showed the match order. It was showed the same order by basicities order. It was provided this substitution reaction again. The major factor was basicities by entire group.
Finally compared the kinetic and thermodynamic data that were showed the very match order. And kinetic and thermodynamic data was showed the same order by basicities. It was proof the major factor by substitution reaction that was basicities again.

目錄
一 鎳(II)錯合物之配位化學
謝誌
中文摘要
Abstract
目錄
圖目錄
表目錄
第一章 緒論
第二章 鎳(II)四胺基大環錯合物之合成
第三章 鎳(II)四胺基大環錯合物與單芽基之配位熱力學研究
第四章 鎳(II)四胺基大環錯合物與單芽基之配位動力學研究
第五章 結論
參考文獻

1. McMillan, D.R. J. Chem. Educ. 1985, 62, 916.
2. Melson, G. A. (Editor) Coordination Chemistry of Macrocyclic Compounds, Plenum Press, New York, 1989.
3. Lindoy, L. F. The Chemistry of Macrocyclic Ligand Complexes, Cambridge University Press, Cambridge, 1989.
4. Jones, D. R.; Lindoy, L. F.;Sargeson, A. M. J. Am. Chem. Soc. 1983, 105, 7327
5. Stubbe, J.; Kozarich, J. W. Chem. Rev. 1987, 87, 1107.
6. Chin, J.;Zou, X. J. Am. Chem. Soc. 1988, 110, 223.
7. Connolly, J. A.; Banaszczyk, M.; Hynes, R. C.; Chin, J. Inorg. Chem. 1994, 33, 665.
8. Cabbiness, D. K.; Margerum, D. W. J. Am. Chem. Soc. 1970, 92, 2151.
9. Martin, L. Y.; Dehayes, L. J.; Zompa, L. J; Busch, D. H. J. Am. Chem. Soc. 1974, 96, 4048.
10. Fabbrizzi, L. J. Chem. Soc., Dalton Trans. 1979, 1857.
11. Hay, R. W.; Bembi, R. Inorg. Chem. Acta. 1982, 65, L227.
12. Cabbiness, D. K.; Margerum, D. W. J. Am. Chem. Soc. 1969, 91, 6540.
13. Olson, D. C.; Vasilevskis, J. Inorg. Chem. 1969, 8, 1611.
14. Busch, D. H.; Farmery, K.; Goedken, V.; Katovic, V.; Melnyk, A. C.; Sperati, C. R.; Tokel, N. Adv. Chem. Ser. 1971, 100, 44.
15. Lin, C. T.; Rorabacher, D. B.; Caley, G. R.; Margerum, D. W. Inorg. Chem. 1975, 14, 919.
16. Hay, R. W.; Clark, G. R. J. Chem. Soc., Dalton Trans. 1977, 1148.
17. Margerum, D. W.; Cayley, G. R.; Weatherburn, D. C.; Pagenkof, G. K. ACS In Coordination Chemistry, ACS Monograph 174; American Chemistry Society; Washington DC, 1978, Vol. 2, p. 1-200.
18. Turan, T. S.; Rorabacher, D. B. Inorg. Chem. 1972, 11, 288.
19. Cabbiness, D. K.; Margerum, D. W. J. Am. Chem. Soc. 1969, 91, 6540.
20. Clay, R.; Corr, S.; Micheloni, M.; Paoletti, P. Inorg. Chem. 1985, 24, 3330.
21. Steinhaus, R. K.; Lee, B. I. Inorg. Chem. 1982, 21, 1829.
22. Cobb, M. A.; Hague, D. N. J. Chem. Soc., Faraday Trans. 1972, 68, 932.
23. Steinhaus, R. K.; Kolopajlo, L. H. Inorg. Chem. 1985, 24, 1839.
24. Steinhaus, R. K.; Kolopajlo, L. H. Inorg. Chem. 1985, 24, 1845.
25. Hague, D. N.; Kinley, K. J. Chem. Soc., Dalton Trans. 1974, 249.
26. Farrar, D. T.; Stuehr, J. E.; Moradi-Arazli, A.; Urbach, F. L.; Campbell, T. G. Inorg. Chem. 1973, 12, 1847.
27. Lee, C. S.; Thesis, Ph. D. National Tsing Hua University, 1984.
28. Liang, B. F.; Thesis, Ph. D. National Tsing Hua University, 1980.
29. Wu, D. T.; Thesis, Ph. D. National Tsing Hua University, 1986.
30. Chen, L. H. Thesis, Ph. D. National Tsing Hua University, 1989.
31. Chung, C. S.; Hung, S. T. J. Chin. Chem. Soc. 1976, 23, 139.
32. Liou, M. C.; Chao, K. H.; Liang, B. F.; Chung, C. S. J. Chin. Chem. Soc. 1978, 25, 27.
33. Chao, K. H.; Liang, B. F.; Chung, C. S. J. Chin. Chem. Soc. 1979, 26, 93.
34. Liang, B. F.; Margerum, D. W.; Chung, C. S. J. Chin. Chem. Soc. 1979, 18, 93.
35. Liang, B. F. Chung, C. S. Inorg. Chem. 1979, 18, 2001.
36. Wu, S. Y.; Lee, C. S.; Chung. C. S. Inorg. Chem. 1984, 23, 420.
37. Poon, C. K. Coord. Chem. Soc. 1954, 76, 1540.
38. Liang, B. F. Chung, C. S. Inorg. Chem. 1980, 19, 572.
39. Lee, C. S.; Chung, C. S. Inorg. Chem. 1984, 23, 4162.
40. Liang, B. F.; Chung, C. S. J. Chem. Soc., Dalton Trans. 1980, 1349.
41. Holm, R. H.; Truex, T. J. J. Am. Chem. Soc. 1971, 93, 285.
42. Holm, R. H.; Truex, T. J. J. Am. Chem. Soc. 1972, 94, 4529.
43. Tang, S. C.; Weinstein, G. N.;Holm, R. H. J. Am. Chem. Soc. 1973, 95, 613.
44. Tang, S.C.; Kotch, S.; Weinstein, G. N.; Lane, R. W.; Holm, R. H. Inorg. Chem. 1973, 12, 2589.
45. Koch, S.; Holm, R. H.; Frankel, R. B. J. Am. Chem. Soc. 1975, 97, 6714.
46. Busch, D. H. Rev. Chem. Prog. 1964, 25, 107.
47. Lindoy, L. F.; Busch, D. H. ‘Preparative Inorganic Reaction’; Vol.6; Interscience. New York, 1971.
48. Curtis, N. F. Coord. Chem. Rev. 1968, 3, 3.
49. Busch, D. H. Helv. Chem. Acta. 1967, 50, 174.
50. Meunier, I.; Mishra, A. K.; Hanquet, B.; Cocolios, P.; Guilard, R. Can. J. Chem. 1995, 73, 685.
51. Comba, P.; Curtis, N. F.; Lawrance, G. A.; O’Leary, M. A.; Skelton, B. W.; White, A. H. J. Chem. Soc., Dalton Trans. 1988, 497.
52. Curtis, N. F. J. Chem. Soc. 1965, 6194
53. Comba. P.; Curtis, N. F.; Lawrance, G. A.; Sargeson, A. M.; Skelton, B. W. White, A. H. Inorg. Chem. 1986, 25, 4260.
54. Lawrance, G. A.; O’Leary, M. A.; Skelton, B. W.; Woon, F. H.; White, A. H. Aust. J. Chem. 1988, 41, 1533.
55. Lawrance, G. A.; Rossignoli, M.; Skelton, B. W.; White, A. H. Aust. J. Chem. 1987, 40, 1441.
56. Lawrance, G. A.; Manning, T. M.; Maeder, M.; O’Lraey, M. A.; Patalinghug, W. C.; Skelton, B. W.; White, A. H. J. Chem. Soc., Dalton Trans. 1992, 1635.
57. Lawrance, G. A.; Manning, T. M.; Maeder, M.; O’Lraey, M. A.; Patalinghug, W. C.; Skelton, B. W.; White, A. H. J. Chem. Soc., Dalton Trans. 1992, 1643.
58. Lawrance, G. A.; Manning, T. M.; Maeder, M.; O’Lraey, M. A.; Patalinghug, W. C.; Skelton, B. W.; White, A. H. J. Chem. Soc., Dalton Trans. 1992, 1649.
59. Fabbrizzi, L. Inorg. Chem. 1980, 19, 2667.
60. Sabatini, L.; Fabbrizzi, L. Inorg. Chem. 1979, 18, 438.
61. Passman, W. H.; Swisher, R. G.; Blinn, E. L.; Inorg. Chem. 1980, 19, 1101.
62. Fabbrizzi, L; Micheloni, M.; Paoletti, P. J. Chem. Soc., Dalton Trans. 1980, 134.
63. Dei, A.; Fabbrizzi, L.; Paoletti, P. Inorg. Chem. 1981, 20, 4035.
64. Coates, J. H.; Hadi, D. A.; Lincoln, S. F. Aust. J. Chem. 1982, 35, 903.
65. Sugimoto, M.; Nonoyama, M.; Ito, T.; Fujita, J. Inorg. Chem. 1983, 22, 950.
66. Newman, K. E. Inorg. Chim. Acta. 1984, 89, L3.
67. Hay, R. W.; Ali, M. Inorg. Chim. Acta. 1985, 103, 23.
68. Ciamopolini, M.; Fabbrizzi, L.; Lincchelli, M.; Perotti, A.;Pezzini, F.; Poggi, A. Inorg. Chem. 1986, 25, 4131.
69. Kobiro, K.; Nakayama, A.; Hiro, T.; Suwa, M.; Tobe, Y. Inorg. Chem. 1992, 31, 676.
70. Edwards, J. O. J. Am. Chem. Soc. 1954, 76, 1540.
71. Liang, B. F.; Peng, T. H.; Chung. C. S. Inorg. Nucl. Chem. 1981, 43, 1671.
72. Drago, R. S. ‘Physical Methods in Inorganic Chemistry’ W. B. Sounders Company; Philadelphia London Toronto. 1997, 95.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top