跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.85) 您好!臺灣時間:2024/12/15 01:41
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:劉柏君
研究生(外文):Po-Chun Liu
論文名稱:嗜甲烷菌內甲烷單氧化酵素中催化反應中心的模擬分子光譜分析與理論研究
論文名稱(外文):Models for The Trinuclear Copper(II) Clusters of the Particulate Methane Monooxygenase from Methanotrophic Bacteria: Synthesis, Spectroscopic and Theoretical Characterization of Trinuclear Cu(II) complexes
指導教授:陳長謙陳長謙引用關係
指導教授(外文):Sunney I. Chan
學位類別:碩士
校院名稱:國立清華大學
系所名稱:化學系
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2003
畢業學年度:91
語文別:英文
論文頁數:83
中文關鍵詞:嗜甲烷菌電子順磁光譜密度泛函數計算三核銅模型化合物
外文關鍵詞:Particulate Methane MonooxygenaseElectron paramagnetic resonanceDensity functional calculationsTrinuclear Cu(II) model complex
相關次數:
  • 被引用被引用:0
  • 點閱點閱:129
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在嗜甲烷菌內甲烷單氧化酵素的催化反應中心,包含兩種具有不同功能的三核銅簇合物。當這些三核銅簇合物完全被氧化成二價銅離子時,根據EPR光譜及磁距數據的分析,可以推測出這些銅簇合物是由三個type 2的銅離子所組成,且三個銅離子之間呈現出弱的鐵磁耦合,J值大約為20 cm-1,且D值小於或等於0.05 cm-1。
由於缺乏相關的晶體數據以及為了解三核銅簇合物的特性,我們合成及研究了數個三核銅模型化合物。其中化合物[Cu3C18H42N6O3(μ3-Br)2](Br)4和[Cu3C18H42N6O3(μ3-Cl)2](Cl)4兩者皆為鐵磁耦合(ferromagnetic coupling),J值分別為430 cm-1以及470 cm-1。有趣的是在電子順磁光譜的實驗中,這兩個化合物都呈現與pMMO類似的等向性(isotropic)的吸收峰,它們的g值分別為2.092及2.104,D值小於或等於0.009 cm-1。
配合密度泛函數計算(Density functional theory)的運用,不僅所得的磁性現象與實驗結果一致,更可以利用分子軌域理論,合理地說明橋配位基如何調整銅離子間的耦合作用。
此外結合實驗和計算的結果,我們發現[Cu3C18H42N6O3(μ3-OH)2](Cl)4及[Cu3C18H42N6O3(μ3-N3)2](Cl)4這兩個化合物在電子順磁光譜上所呈現的非等向性(anisotropic)吸收峰,可能是於三個銅之間的反鐵磁作用所造成的。

The catalytic sites in the particulate methane monooxygenase from Methylococcus capsulatus (Bath) involve two sets of trinuclear Cu(II) clusters. It has been proposed that when the trinuclear copper clusters of pMMO are fully oxidized, each of the oxidased clusters consists of three type 2 copper centers that are mutually weakly ferromagnetically coupled (J ~ 20cm-1) and D ≦ 0.05 cm-1. Toward elucidating these results, several trinuclear Cu(II) model complexes are synthesized and characterized. The complexes, [Cu3C18H42N6O3(μ3-Br)2](Br)4 and [Cu3C18H42N6O3(μ3-Cl)2](Cl)4, are ferromagnetically coupled with J = 430 cm-1 and 470 cm-1, respectively. Both cases show the isotropic EPR signal at g = 2.092 and g = 2.104 with D ≦ 0.009 cm-1. Density functional calculations reproduce well these geometric, electronic and magnetic properties of these tricopper complexes, and provide insights into the spin coupling interactions mediated by the bridging ligands. Furthermore, they reasonably explain that the anisotropic EPR signal abserved of [Cu3C18H42N6O3(μ3-OH)2](Cl)4 might arise from the antiferromagnetic interactions among the three copper(II) ions.

Chapter 1: Introduction………………………………………2
Chapter 2: Experimental Section……………………………7
2.1 Experimental drugs………………………………………7
2.2 Instrument…………………………………………………7
2.3 Sample preparation………………………………………8
Chapter 3: Electronic Spectrum……………………………18
3.1 Electronic spectrum of small-molecule copper(II)
complexes…………………………………………………18
3.2 Electronic spectrum of tetracopper(II)
complex……………………………………………………19
3.3 Electronic spectra of our tricopp(II)
complexes…………………………………………………20
Chapter 4: Magnetic Susceptibility………………………23
Chapter 5: Electron Paramagnetic Resonance
Spectroscopy……………………………………29
5.1 EPR spectrum of pMMO……………………………………29
5.2 EPR signals associated with the trinuclear copper
cluster ( S = 3/2)………………………………………31
5.3 EPR spectra of the trinuclear copper(II)
complexes (S = 1/2)………………………………………33
5.4 EPR spectra of our trinuclear copper(II) model
complexes……………………………………………………37
5.5 Simulation of the [Cu3C18H42N6O3(m3-Cl)2](Cl)4
EPR spectrum………………………………………………41
Chapter 6: Density Function Calculations………………43
6.1 Broken symmetry analysis for a three-copper
cluster………………………………………………………44
6.2 Orbital interactions among copper ions…………49
Chapter 7: Conclusions………………………………………56
Reference………………………………………………………58
Appendix…………………………………………………………63

(1)Solomon, E. I.; Baldwin, M. J.; Lowery, M. D. Chem. Rev.
1992, 92, 521-542.
(2)Malkin, R.; Malmström, B. G. Adv. Enzymol. 1970, 33, 177.
(3)Reinhammar, B. In Copper proteins and Copper Enzymes;
Lontie, R., Ed.; CRC press: Boca Raton, FL, 1984; Vol. III;
pp1.
(4)Holm, R. H.; Kennepohl, P.; Solomon, E. I. Chem. Rev. 1996,
96, 2239-2314.
(5)Kitajima, N.; Moro-oka, Y. Chem. Rev. 1994, 94, 737-757.
(6)Solomon, E. I.; Jones, P. M.; May, J. A. Chem. Rev. 1993,
93, 2623-2644.
(7)Solomon, E. I.; Chen, P.; Metz, M.; Lee, S. K.; Palmer, A.
E. Angew. Chem. Int.Ed. 2001, 40, 4570-4590.
(8)Solomon, E. I.; Sundaram, U. M.; Machonkin, T. E. Chem. Rev.
1996, 96,2563-2605.
(9)Allendorf, M. D.; Spira, D. J.; Solomon, E. I. Proc. Natl.
Acad. Sci. U. S. A.1985, 82, 3063-3067.
(10)Cole, J. L.; Clark, P. A.; Solomon, E. I. J. Am. Chem. Soc.
1990, 112,9534-9548.
(11)Cole, J. L.; Tan, G. O.; Yang, E. K.; Hodgson, K. O.;
Solomon, E, I. J. Am. Chem. Soc. 1990, 112, 2243-2249.
(12)Sundaram, U. M.; Zhang, H. H.; Hedman, B.; Hodgson, K. O.;
Solomon, E. I. J.Am. Chem. Soc. 1997, 119, 12525-12540.
(13)Zaitseva, I.; Zaitsev, V.; Card, G.; Moshkov, K.; Bax, B.;
Ralph, A.; Lindley, P.J. Biol. Inorg. Chem. 1996, 1, 15-23.
(14)Messerschmidt, A.; Ladenstein, R.; Huber, R.; Bolognesi,
M.; Avigliano, L.;Petruzzelli, R.; Rossi, A.;
Finazziagro,A. J. Mol. Biol. 1992, 224, 179-205.
(15)Messerschmidt, A.; Luecke, H.; Huber, R. J. Mol. Biol.
1993, 230, 997-1014.
(16)Klinman, J. P. Chem. Rev. 1996, 96, 2541-2561.
(17)Nguyen, H.-H. T.; Shiemke, A. K.; Jacobs, S. J.; Hales, B.
J.; Lidstrom, M.E.;Chan, S.I. J. Biol. Chem. 1994, 269,
14995-15005.
(18)Nguyen, H-HT; Nakagawa, K. H.; Hedman, B.; Elliott, S.J.;
Lidstrom, M.E.;Hodgson, K.O.; Chan, S.I. J. Am. Chem. Soc.
1996, 118, 12766-12776.
(19)Elliott, S. J.; Zhu, M.; Tso, L.; Nguyen, H-H. T.; Yip, J.
H-K.; Chan, S. I. J. Am.Chem. Soc. 1997, 119, 9949-9955.
(20)Nguyen, H-H. T.; Elliott, S. J.; Yip, J. H-K.; Chan, S. I.
J. Biol. Chem. 1998,273, 7957-7966.
(21)Hung, S.-C.; Elliott, S. J.; Yu S. S.-F.; Nguyen, H.-H. T.;
Chan, S.I. (submit)
(22)Chan, S.I.; Nguyen, H.-H. T.; Shiemke, A. K.; Lidstrom,
M.E. In MicrobialGrowth on C1 Compounds; Murrell, J. C.,
Kelley, D. P., Eds.; Intercept:Andover, Hampshire, U.K.
1993.
(23)Chan, S.I.; Nguyen, H.-H. T.; Shiemke, A. K.; Lidstrom,
M.E. In Bioinorganic Chemistry of Copper; Karlin, K. D.,
Tyeklár, Z., Eds.; Chapman and Hall: New York, 1993; pp184.
(24)Comarmond, J.; Dietrich, B.; Lehn, J-M.; Louis, R. J. Chem.
Soc., Chem.Commun. 1985, 74-76.
(25)Kodera, M.; Tachi, Y.; Kita, T.; Kobushi, H.; Sumi, Y.;
Kano, K.; Shiro, M.;Koikawa, M.; Tokii, T.; Ohba, M.;
Okawa, H. Inorg. Chem. 2000, 39, 226-234.
(26)Sanmartín, J.; Bermejo, M. R.; García-Deibe, A. M.;
Nascimento, O. R.;Lezama, L.; Rojo, T. J. Chem. Soc.,
Dalton Trans., 2002, 1030-1035.
(27)Angaridis, P. A.; Baran, P.; Boča, R.; Cervantes-Lee, F.;
Haase, W.; Mezei, G.;Raptis, R. G.; Werner, R. Inorg. Chem.
2002, 41, 2219-2228.
(28)Tang, J. K.; Wang, H. M.; Cheng, P.; Liu, X.; Liao, D. Z.;
Jiang, Z. H.; Yan, S. P.Polyhedron 2001, 20, 675-680.
(29)Clérac, R.; Cotton, F. A.; Dunbar, K. R.; Hillard, E. A.;
Petrukhina, M. A.;Smucker, B. W. C. R. Acad. Sci. Paris,
Chimie / Chemistry 2001, 4, 315-319.
(30)Butcher, R. J.; O’Connor, C. J.; Sinn, E. Inorg. Chem.
1981, 20, 537-545.
(31)Costes, J. P.; Dahan, F.; Laurent, J. P. Inorg. Chem. 1986,
25, 413-416.
(32)Chaudhuri, P.; Karpenstein, I.; Winter, M.; Butzlaff, C.;
Bill, E.; Trautwein, A.X.; Flörke, U.; Haupt, H-J. J.
Chem. Soc., Chem. Commun. 1992, 321-322.
(33)Adams, H.; Bailey, N. A.; Dwyer, M. J. S.; Fenton, D. E.;
Hellier, P. C.;Hempstead, P. D.; Latour, J. M. J. Chem.
Soc., Dalton Trans., 1993, 8,1207-1216.
(34)Gehring, S.; Fleischhauer, P.; Paulus, H.; Haase, W. Inorg.
Chem. 1993, 32,54-60.
(35)Meenakumari, S.; Tiwary, S. K.; Chakravarty, A. R. Inorg.
Chem. 1994, 33,2085-2089.
(36)Suh, M. P.; Han, M. Y.; Lee, J. H.; Min, K. S.; Hyeon, C.
J. Am. Chem. Soc.1998, 120, 3819-3820.
(37)Spiccia, L.; Graham, B.; Hearn, M. T. W.; Lazarev, G.;
Moubaraki, B.; Murray,K. S.; Tiekink, E. R. T. J. Chem.
Soc., Dalton Trans., 1997, 21, 4089-4097.
(38)Kolks, G.; Lippard, S. J.; Waszczak, J. V. J. Am. Chem.
Soc.1980, 102,4832-4833.
(39)Chaudhuri, P.; Winter, M.; Della Védova, B. P. C.; Bill, E
.; Trautwein, A.;Gehring, S.; Fleischhauer, P.; Nuber, B.;
Weiss, J. Inorg. Chem. 1991, 30,2148-2157.
(40)Dietrich, B.; Hosseini, M. W.; Lehn, J. M.; Sessions, R. B.
Helv. Chim. Acta1983, 66, 1262-1278.
(41)Biernat, J. F.; Lauboch, E. Tetrahedron 1984, 10, 1927-1929.
(42)Searle, G. H.; Geue, R. J. Aust. J. Chem. 1984, 37, 959-970.
(43)Ouchi, M.; Inoue, Y.; Liu, Y.; Nagamune, S.; Nakamura, S.;
Wada, K.; Hakushi,T. Bull. Chem. Soc. Jpn. 1990, 63, 1260-
1262.
(44)Pantoliano, M. W.; Valentine, J. S.; Nafie, L. A. J. Am.
Chem. Soc. 1982, 104,6310-6317.
(45)Shimada, T.; Kodera, M.; Okawa, H.; Kida, S. J. Chem. Soc.,
Dalton Trans.1992, 1121-1125.
(46) Kahn, O. Molecular Magnetism; VCH Publishers: NEW YORK,
1993.
(47)te Velde, G.; Bickelhaupt, F. M.; Baerends, E. J.; Fonseca,
C. F.; van Gisbergen,S. J. A.; Snijder, J. G.; Ziegler, T.
J. Comput. Chem. 2001, 22, 931-967.
(48)(a) Snijders, J. G.; Baerends, E. J.; Vernooijs, P. At.
Nucl. Data Tables 1982, 26,483. (b) Vernooijs, P.;
Snijders, J. G.; Baerends, E. J. Slater Type BasisFunctions
for the Whole Periodic System; Internal report: Free
University of Amsterdam: Amsterdam, The Netherlands, 1984.
(49)Vosko, S. H.; Wilk, L.; Nusair, M. Can. J. Phys. 1980, 58,
1200-1211.
(50)Perdew, J. P.; Chekavry, J. A.; Vosko, S. H.; Jackson, K.
A.; Perderson, M. R.;Singh, D. J.; Fioihais, C. Phys. Rev.
B 1992, 46, 6671-6687.
(51)Noodleman, L. J. Chem. Phys. 1981, 74, 5737-5743.
(52)Griffith, J. S. Struct. Bond. (Berlin) 1972, 10, 87.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top