(100.24.122.117) 您好!臺灣時間:2021/04/12 06:43
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:謝惠珠
研究生(外文):Hui-Chu Hsieh
論文名稱:台灣眼鏡蛇神經毒蛋白與胜肽之交互作用及錳型超氧岐化酶的去摺疊反應途徑研究
論文名稱(外文):1. Interaction Studies of Cobrotoxin from the Venom of Naja naja atra; 2. Investigationof the Unfolding Pathway of a Manganese Superoxide Dismutase Isolated from Vibrio alginolyticus
指導教授:余靖余靖引用關係
指導教授(外文):Chin Yu
學位類別:博士
校院名稱:國立清華大學
系所名稱:化學系
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2003
畢業學年度:91
語文別:英文
論文頁數:137
中文關鍵詞:蛋白質摺疊眼鏡蛇神經毒蛋白超氧歧化酶核磁共振
外文關鍵詞:Protein FoldingCobrotoxinSuperoxide dismutaseNuclear Magnetic Resonance
相關次數:
  • 被引用被引用:0
  • 點閱點閱:117
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
台灣眼鏡蛇神經毒為一個含有62個胺基酸及四對雙硫鍵的蛋白質,其二級結構全為摺板結構。台灣眼鏡蛇神經毒會與煙鹼乙烯膽鹼受體結合而阻斷神經肌肉的訊息傳遞。此文中,我們報導了台灣眼鏡蛇神經毒的克隆並利用大腸桿菌來表現此神經毒,我們將台灣眼鏡蛇神經毒連接一段免疫球蛋白的結合蛋白,融合蛋白的產率為每公升培養液有12毫克融合蛋白。我們讓台灣眼鏡蛇神經毒在適當的氧化還原條件下摺疊,並進一步利用蛋白質電泳、圓二色光譜儀及核磁共振技術作進一步的鑑定,從各項結果顯示重組蛋白質的構形與原生型神經毒的構形相當類似。此外,我們利用核磁共振技術研究了台灣眼鏡蛇神經毒與兩段煙鹼乙烯膽鹼受體胜肽(殘基122-138及182-202)的交互作用,結果證明這兩段胜肽皆與台灣眼鏡蛇神經毒有交互作用,並具有不同的結合位置。
 超氧歧酶可保護細胞免於氧化傷害,並控制細胞中超氧的濃度。本文中的錳型超氧歧化酶來自水產弧菌,它的胺基酸序列與人類粒線體中的錳型超氧歧化酶具有很高的相似度,並以二聚體存在於自然界中。我們利用圓二色光譜儀、螢光儀、核磁共振光譜儀、大小排除層析及沉降係數測量來探討此錳型超氧歧化酶的開散途徑。我們發現在1.5M的氫氯化胍(GdnHCl)下,可觀察到反應中間物的形成,大小排除層析及沉降係數的結果顯示了此二聚體蛋白質在開散過程中部分結構會先開散,而另一部份結構的開散則伴隨著單體間的解離。
The cobrotoxin, isolated from Taiwan cobra (Naja naja atra) venom, is a small, basic, all β-sheet protein consisting of a single polypeptide chain of 62-amino acid residues, cross-linked by 4 disulfide bonds. Cobrotoxin binds specifically to the nicotinic acetylcholine receptor on the postsynaptic membrane and thus blocks neuromuscular transmissions. We report the direct expression of this protein from its synthetic gene in Escherichia coli. The clone of cobrotoxin was built in a ZZ construct, a synthetic IgG-binding domain of protein A fused at its N-terminus. A soluble fusion protein was obtained with a yield of 12 mg/L (corresponding to 4 mg/L for the free form of cobrotoxin). The toxin moiety was folded in IgG column in optimal oxidoreducing condition. The purified and refolded recombinant cobrotoxin sample is further characterized by SDS—PAGE, circular dichroism, and multi-dimensional NMR spectroscopy. Both the optical and NMR spectroscopy clearly suggest that the conformation features of the recombinant and authentic cobrotoxin are very similar. The interaction between cobrotoxin and two peptide fragments that correspond to the segment residues 122-138 and 182-202 of the nicotinic acetylcholine receptor was investigated by NMR technology. According the results of chemical shift perturbation, these two peptides both bind to cobrotoxin but with different binding sites in toxin molecule. The methods presented here described the first study of a high-level expression system with a simple purification and refolding procedure of cobrotoxin. It provides us a unique opportunity for NMR to investigate the interactions between cobrotoxin and the acetylcholine receptor/peptides.
Superoxide dismutases (SODs) defend cells against oxidative damage and control superoxide concentrations. Defects in SOD contribute to neurodegenerative diseases apparently through the breakdown of radical defense mechanisms. MnSOD from different species form either dimer or tetramer. Vibrio alginolyticus MnSOD have high sequence homology with human mitochondrial MnSOD. But instead of being a tetramer, Vibrio alginolyticus MnSOD exists in a dimeric from. In present study, we use circular dichroism spectroscopy, fluorescence spectroscopy, NMR, size exclusion chromatography and sedimentation velocity measurements to investigate the unfolding of this dimeric molecular in GdnHCl. The results reveal that a stable partially structured intermediate accumulates in the GdnHCl-induced unfolding pathway of this protein. The intermediate accumulate maximally in 1.5 M GdnHCl and exhibits characteristics of a molten globule-like state. Results of the size-exclusion chromatography and sedimentation velocity experiments suggest dissociation of the protein into monomers only occur in the late stage of the unfolding process. According the results obtained from those techniques, we conclude the unfolding of apo MnSOD is a non-two-states process.
1.Introduction………………………………………………………………7
1.1Introduction……………………………………………………………7
1.2 Brief review of the nicotinic acetylcholine receptor (nAChR)………………9
1.2.1 Nicotinic acetylcholine receptor………………………………9
1.2.2 Acetylcholine-binding protein………………………………11
1.3. Primary, secondary and tertiary structure of cobrotoxin………17
1.3.1 Primary structure……………………………………17
1.3.2 Secondary and tertiary structure………………………………………19
1.3.3 The structural difference in the long and short neurotoxin……………23
1.4 The different binding model of long and short toxin…………………………24
1.5 Mapping the protein-ligand interactions by using chemical shift perturbation experiment …………………………………………27
2. Materials and methods……………………………………….30
2.1 Snake venom purification……………………………………30
2.1.1 Fractionation of the crude venom………………………30
2.2 Preparation of recombinant cobrotoxin…………………30
2.2.1 Construction and expression of the cobrotoxin synthetic gene…….…...31
2.2.2 Purification of recombinant cobrotoxin………………….33
2.2.3 In vitro refolding…………………………………………………33
2.2.4 Self-degradation and purification of recombinant cobrotoxin…….……33
2.3 Characterization of recombinant cobrotoxin………….34
2.3.1 Reverse phase high performance liquid chromatography (RP-HPLC)…………………………………………………………………34
2.3.2 Circular dichroism……………………………………………35
2.3.3 Multi-dimensional NMR experiments……………………….35
2.4 Peptide titration……………………………………………36
2.4.1 Peptide preparation…………………………………………36
2.4.2 The peptide titration experiment of cobrotoxin with a 25mer peptide (182-202) …………………………………………………36
2.4.3 The peptide titration experiment of cobrotoxin with a 17mer peptide (122-138)…………………………………………………37
3. Result and discussion……………………………………38
3.1 Purification of cobrotoxin from the crude venom……38
3.2 Clone construction, expression and purification of cobrotoxin……38
3.2.1 Clone construction…………………………………………………38
3.2.2 Expression of the cobrotoxin fusion protein………………40
3.2.3 Purification of the recombinant fusion protein……………42
3.2.4 In vitro refolding…………………………………………………42
3.2.5 Proteolytic digestion of the recombination toxin………45
3.2.6 Purification of the recombinant cobrotoxin…………………48
3.2 Identification of the recombinant cobrotoxin………51
3.3.1 Identification by circular dichroism…………………………51
3.3.2 Identification by NMR Spectroscopy……………………………55
3.3 Backbone amide resonance assignments……………………57
3.3.1 Reassignment of the 15N-1H HSQC spectrum of cobrotoxin at pH 6.5…65
3.4 Interaction between the cobrotoxin and the receptor peptide fragment…….65
3.4.1 Mapping the binding residues of cobrotoxin with a 17mer peptide…..68
3.4.2 Mapping the binding residues of cobrotoxin with a 25mer peptide…..74
4.Conclusion……………………………………………………………….84
5.Reference…………………………………………………………………88
1.Introduction………………………………………………………...102
1.1 Manganese superoxide dismutase isolated from Vibrio alginolyticus……….104
2. Method and material: ……………………………………107
2.1. Protein expression and purification…………………107
2.2. Steady state fluorescence measurements……………108
2.3. Circular dichroism measurements……………………109
2.4. Analysis of equilibrium denaturation data…………109
2.5. Size exclusion chromatography…………………………109
2.6. Analytical ultracentrifugation………………………110
3. Results……………………………………………………………111
3.1 Protein expression and purification ……………………111
3.2 GdnHCl induced unfolding of apo MnSOD monitored by fluorescence spectroscopy…………………………………………………………111
3.3 GdnHCl induced unfolding of apo MnSOD monitored by circular dichroism…………………………………………………………114
3.4 GdnHCl induced unfolding of apo MnSOD monitored by ANS fluorescence……………………………………………………119
3.5 Refolding of apo MnSOD from the 6M GdnHCl denatured states…………121
3.6 GdnHCl induced unfolding of Apo-MnSOD monitored by size-exclusion liquid chromatography…………………………………124
3.7 Characterization of dissociation of apo MnSOD in presence of GdnHCl by analytical ultracentrifugation…………………126
4. Discussion…………………………………………………………131
5. Conclusion…………………………………………………………133
6.Reference……………………………………………………134
Ackermann, E.J., Taylor, P. Nonidentity of the alpha-neurotoxin binding sites on the nicotinic acetylcholine receptor revealed by modification in alpha-neurotoxin and receptor structures. (1997) Biochemistry, 36, 12836-12844
Ackermann, E.J., Ang, E.T.H., Kanter, J.R., Tsigelny, I. and Taylor, P. Identification of pairwise interactions in the alpha-neurotoxin-nicotinic acetylcholine receptor complex through double mutant cycles. (1998) J. Biol. Chem. 273,10958-10964.
Albrand, J.P., Blackledge, M.J., Pascaud, F., Hollecker, M. and Marion, D. NMR and restrained molecular-dynamics study of the 3-dimensional solution structure of toxin FS2, a specific blocker of the l-type calcium-channel, isolated from black mamba venom. (1995) Biochemistry 34, 5923-5937.
Antil, S., Servent, D. and Menez, A. Variability among the sites by which curaremimetic toxins bind to torpedo acetylcholine receptor, as revealed by identification of the functional residues of alpha-cobratoxin. (1999) J. Biol. Chem. 274, 34851-34858.
Antil-Delbeke, S., Gaillard, C., Tamiya, T., Corringer, P.J., Changeux, J.P., Servent, D. and Menez A. Molecular determinants by which a long chain toxin from snake venom interacts with the neuronal alpha 7-nicotinic acetylcholine receptor. (2000) J. Biol. Chem. 275, 29594-29601.
Arias, H.R. Localization of agonist and competitive antagonist binding sites on nicotinic acetylcholine receptors. (2000) Neurochem. Int. 36, 595-645.
Brejc, K., van DijK, W.J., Klaassen, V. R., Schuurmans, M., van der Oost, J., Smit, A.B. and Sixma, T.K. Crystal structure of an ach-binding protein reveals the ligand-binding domain of nicotinic receptor (2001) Nature, 411, 269-276.
Brown, L.R and Wuthrich, K., Nuclear-magnetic-resonance solution structure of the alpha-neurotoxin from the black mamba (Dendroaspis-polylepis-polylepis). (1992) J.Mol. Biol. 227, 1118-1135.
Chang, C. C., Yang, C. C., Nakai, K., and Hayashi, K. Studies on the status of free amino and carboxyl groups in cobrotoxin. (1971) Biochim. Biophys. Acta 251, 334-344.
Changeux, J. P. Studies of acetylcholine receptors in the electric organs of fish have generated critical insight into how neurons in the human brain communicate with one another. (1993) Science American p30-37.
Changeux, J.P. and Deelstein, S. J. Allosteric receptors after 30 years. (1998 ) Neuron 21, 959-980.
Clubb R.T., Omichinski J.G., Clore G.M. and Gronenborn A.M. Mapping the binding surface of interleukin-8 complexed with an n-terminal fragment of the type-1 human interleukin-8 receptor (1994) FEBS Lett, 338, 93-97.
Drevet P., Lemaire C., Gasparini S., ZinnJustin S., Lajeunesse E., Ducancel F., Pinkasfeld S., Courcon M., Tremeau O., Boulain J.C. and Menez A. High-level production and isotope labeling of snake neurotoxins, disulfide-rich proteins, (1997) Protein Expres. Purif. 10, 293-300.
Dufton, M.J. and Hider, R.C. Conformational properties of the neurotoxins and cytotoxins isolated from elapid snake-venoms (1983) Crit. Rev. Biochem. 14, 113-171.
Endo, T. and Tamiya, N. Current view on the structure-function relationship of postsynaptic neurotoxins from snake-venoms (1987) Pharmacol. Ther. 34, 403-451.
Endo, T., and Tamiya, N. (1991) Snake Toxins (Harvey, A. L., Ed.) pp 165-222, pergamon Press, New york.
Galat A., Degelaen J.P., Yang C.C., Blout E.R., Reversed Unfolding-Refolding Process Of Cobra Neurotoxin, (1981) Biochemistry, 20, 7415-7423.
Goddard T.D and Kneller D.G., SPARKY 3, University of California, San Francisco
Harel, M., Kasher, R., Nicolas, A., Guss, J.M., Balass, M., Fridkin, M., Smit, A.B. Brejc, K., Sixma, J.K. Katchalski-Katzir, E., Sussman, J.L. and Fuchs, S. The binding site of acetylcholine receptor as visualized in the x-ray structure of a complex between alpha-bungarotoxin and a mimotope peptide. (2001) Neuron 32, 265-275.
Hatanaka H., Oka M., Kohda, D., Tate, S., Suda, A., Tamiya, N. and Inagaki, F. Tertiary structure of erabutoxin-b in aqueous-solution as elucidated by 2-dimensional nuclear-magnetic-resonance. (1994) J. Mol. Biol. 240,155-166.
Ikuar M., Kay, L.E. and Bax A. A novel-approach for sequential assignment of H-1, C-13, and N-15 spectra of larger proteins - heteronuclear triple-resonance 3-dimensional NMR-spectroscopy - application to calmodulin. (1990) Biochemistry 29, 4659-4667.
Jinnai, K., Ashizawa, T and Atassi, M.Z. Analysis of exposed region on the main extracellular domain of mouse acetylcholine receptor α subunit of antipeptide antibodies. (1994) J. Protein Chem. 13, 715-722.
Kuo, K.W., Chang, L.S. and Chang, C.C. The structural loop-II of cobrotoxin is the main binding gegion for nachr and epitope the region is conformation-dependent. (1995a) J. Biochem. —Tokyo 117, 438-442.
Kuo, K.W., Chang, L.S. and Chang, C.C. Role of amino and carboxyl groups of cobrotoxin in the conformational stablity and the ineraction with acetylcholine-receptor. (1995b) Iint. J. Pept. Prot. Res. 46, 181-185.
Lin, S. R. and Chang, C. C. Studies on the status of amino-groups in alpha-bungarotoxin (1991) Toxicon 29, 937-950.
Love, R.A. and Stroud, R.M., The crystal structure of alpha-bungarotoxin at 2.5 å resolution: relation to solution structure and binding to acetylcholine receptor. (1986) Protein Eng, 1, 37-46.
Low B.W. and Corfield, P.W.R. Erabutoxin-b - tructure-function-relationships following initial protein refinement at 0.140-nm resolution. (1986) Eur. J. Biochem. 161, 579.
McAlister, M.S.B, Mott, H.R., vanderMerwe, P.A., Campbell, I.D., Davis, S.J. and Driscoll, P.C. NMR analysis of interacting soluble forms of the cell-cell recognition molecules CD2 and CD48 (1996) Biochemistry 35, 5982-5991.
Moise, L., Piserchio, A., Basus, V.J. and Hawrot, E. NMR structural analysis of alpha-bungarotoxin and its complex with the principal alpha-neurotoxin-binding sequence on the alpha 7 subunit of a neuronal nicotinic acetylcholine receptor. (2002) J. Biol. Chem. 277, 12406-12417.
Moise, L., Zeng, H., Caffery, P., Rogowski, R.S and Hawrot, E., Structure and function ofα-bungarotoxin. (2002) J. Toxicol-Toxin Rev, 21, 293-317.
Mulac-Jericevic, B. and Atassi, M.Z., Profile of the alpha-bungarotoxin-binding regions on the extracellular part of the alpha-chain of Torpedo-californica acetylcholine-receptor. (1987) Biochem. J. 248, 847-852.
Neumann, D., Barchan, D., Safran, A., Gershoni, J.M. and Fuchs, S. Mapping of the alpha-bungarotoxin binding-site within the alpha-subunit of the acetylcholine-receptor. (1986) P. Natl. Acad.Sci. USA 83, 3008-3011.
Pillet, L., Tremeau, O., Ducancel, F., Drevet, P., Zinnjustin, S., Pinkasfeld, S., Boulain, J.C. and Menez A. Genetic-engineering of snake toxins - role of invariant residues in the structural and functional-properties of a curaremimetic toxin, as probed by site-directed mutagenesis. (1993) J. Biol. Chem. 268, 909-916.
Ralston, S., Sarin, V., Thanh, H.L., Rivier, J., Fox, J.L. and Lindstrom, J. Synthetic peptides used to locate the alpha-bungarotoxin binding-site and immunogenic regions on alpha-subunits of the nicotinic acetylcholine-receptor. (1987) Biochemistry 26, 3261-3266.
Rosen, M.K., Yamazaki, T., Gish, G.D., Kay, C.M., Pawson, T. and Kay, L.E. Direct demonstration of an intramolecular SH2-phosphotyrosine interaction in the Crk protein. (1995) Nature, 347, 477-479.
Rosenthal, J.A., Hsu, S.H., Schenider, D., Gentile, L.N., Messier, N.J., Vaslet, C.A. and Hawrot. E. Functional expression and site-directed mutagenesis of synthetic gene for α-bungarotoxin (1994) J. Biol. Chem, 269, 11178-11185.
Rosenthal J.A., Levandoski, M.M., Chang, B., Potts, J.F., Shi, Q.L. and Hawrot E., The functional role of positively charged amino acid side chains in α-bungarotoxin revealed by site-directed mutagenesis of a His-tagged recombinant alpha-bungarotoxin. (1999) Biochemistry 38, 7847-7855.
Ruan, K.H., Stiles, B.G. and Atassi, M.Z. The short-neurotoxin-binding regions on theα-chain of human and Torpedo californica acetylcholine receptors. (1991) Biochem. J. 274, 849-854.
Samson, A.O., Chill, J.H., Rodriguez, E., Scherf, T. and Anglister, J., NMR mapping and secondary structure determination of the major acetylcholine receptor alpha-subunit determinant interacting with alpha-bungarotoxin (2001) Biochemistry, 40, 5464-5473.
Scarselli, M., Spiga, O., Ciutti, A., Bernini, A., Bracci, L., Lelli, B., Lozzi, L., Calamandrei, D., DiMaro, D., Klein, S., and Niccolai, N., NMR structure of alpha-bungarotoxin free and bound to a mimotope of the nicotinic acetylcholine receptor. (2002) Biochemistry 41, 1457-1463.
Scherf T, Kasher R, Balass M, Fridkin M, Fuchs S, Katchalski-Katzir E., A beta-hairpin structure in a 13-mer peptide that binds alpha-bungarotoxin with high affinity and neutralizes its toxicity. (2001) P. Natl. Acad. Sci. USA, 98, 6629-6634.
Servent, D., Winckler-Dietrich, V., Hu, H. Y., Kessler, P., Drevet, P., Bertrand, D., and Me´nez, A. (1997) J. Biol. Chem. 272, 24279-24286.
Smit, A.B. Syed, N.I., Schaap, D., van Minnen, J., Klumperman, J., Kits, K.S., Lodder, H., van der Schors, R.C., van Elk, R., Sorgedrager, B., Brejc, K., Sixma T.K. and Geraerts., W.P.M. A glia-derived acetylcholine-binding protein that modulates synaptic transmission. (2001) Nature 411, 261-268.
Spura, A., Russin, T.S., Freedman, N.D., Grant, M., McLaughlin, J.T. and Hawrot, E. Probing the agonist domain of the nicotinic acetylcholine receptor by cysteine scanning mutagenesis reveals residues in proximity to the alpha-bungarotoxin binding site. (1999) Biochemistry 38, 4912-4921.
Tremeau, O., Lemaire, C., Drevet, P., Pinkasfeld, S., Ducancel, F., Boulain, J.C., Menez A., Genetic-engineering of snake toxins - the functional site of erabutoxin-a, as delineated by site-directed mutagenesis, includes variant residues. (1995) J. Biol. Chem. 270, 9362-9369.
Vannuland, N.A.J., Kroon, G.J.A., Dijkstra, K., Wolters, G.K., Scheek, R.M. and Robillard, G.T. The NMR determination of the IIA(MTL) binding-site on hpr of the Escherichia-coli phosphoenol pyruvate-dependent phosphotransferase system. (1993) FEBS Lett. 315, 11-15.
Walkinshaw, M.D., Saenger, W. and Maelicke, A. 3-dimensional structure Of the long neurotoxin from cobra venom. (1980) Proc. Natl. Acad. Sci. USA, 77, 2400-2404.
Wilson, P.T., Lentz, T.L. and Hawrot, E., Determination of the primary amino-acid-sequence specifying the alpha-bungarotoxin binding-site on the alpha-subunit of the acetylcholine-receptor from Torpedo-Californica (1985) P. Natl. Acad. Sci. USA, 82,8790-8794.
Wüthrich, K., NMR of proteins and nucleic acids. (1986) John, Willey & Sons, New York, NY.
Yang, C.C., Crystallization and properties of cobrotoxin from Formosan. cobra venom. (1965) J. Biol. Chem. 240, 1616-1618.
Yang, C. C. The disulfide bonds of cobrotoxin and their relationship to lethality. (1967) Biochim. Biophys. Acta. 133, 346-355.
Yang, C.C., Chang, C.C., Hayashi, K. and Suzuki, T. Amino acid composition and end group analysis of cobrotoxin. (1969a) Toxicon 7, 43-47.
Yang, C. C., Yang, H.J., and Huang, J.S. The amino acid sequence of cobrotoxin. (1969b) Biochim. Biophys. Acta 188, 65-77.
Yang, C.C. and Change, L.S. Biochemistry and molecular biology of snake neurotoxin. (1999) J. Chin. Chem. Soc.-Taip. 46, 319-332.
Yu, C., Lee, C.S., Chuang, L.C., Shei, Y.R., and Wang, C.Y., 2-dimensional NMR-studies and secondary structure of cobrotoxin in aqueous-solution. (1990) Eur. J. Biochem., 193. 789-799.
Yu, C., Bhaskaran, R., Chuang, L.C. and Yang, C.C. Solution conformation of cobrotoxin: a nuclear magnetic resonance and hybrid distance geometry -dynamical simulated annealing study. (1993) Biochemistry 32, 2131-2136.
Zuiderweg, E.R.P. Mapping protein-protein interactions in solution by NMR Spectroscopy. (2002) Biochemistry 41, 1-7.
Borgstahl, G.E.O., Parge, H.E., Hickey, M.J., Beyer, W.F., Hallewell, R.A. and Tainer, J.A. The structure of human mitochondrial manganese superoxide-dismutase reveals a novel tetrameric interface of 2 4-helix bundles (1992) cell 71, pp 107-118.
Borgstahl, G.E.O., Parge, H.E., Hickey, M.J., Johnson, M.J., Boissinot, M., Hallewell. R.A., Lepock. J.R., Cabelli, D.E. and Tainer, J.A., Human mitochondrial manganese superoxide dismutase polymorphic variant Ile58Thr reduces activity by destabilizing the tetrameric interface. (1996) Biochemistry 35, 4287-4297.
Borstahl, G.E., Parge, H.E., Hickey, M.J., Johnson, M.J., Boissinot, M., Hallewell, R.A., Lepock, J.R., Cabelli, D.E. and Tainer, J.A. Human mitochondrial manganese superoxide dismutase polymorphic variant Ile58Thr reduces activity by destabilizing the tetrameric interface (1996) Biochemistry 35, 4287-4297
Chang, H.C., Chou, W.Y. and Chang G.G. Effect of metal binding on the structural stability of pigeon liver malic enzyme. (2002) J.Biol.Chem. 277, 4663-4671
Dam, T. and Jaenicke, R. Stability and folding of dihydrofolate reductase from the hyperthermophilic bacterium thermotoga maritime. (1999) Biochemistry 38, 9169-9178.
Edward, R.A., Baker, H.M., Whittaker, M.M., Whittaker, J.W, Jameson, G.B., and Baker, E.N., Crystal structure of Escherichia coli manganese superoxide dismutase at 2.1-angstrom resolution (1998) J. Bio.l Inog. Chem. 3,161-171.
Gittelman, M.S. and Matthews, R. Folding and stability of trp aporepressor grom Escherichia coli. (1990) Biochemistry 29, 7011-7020.
Gloss, L.M and Matthews, C.R. Urea and thermal equilibrium denaturation studies on the dimerization domain of Escherichia coli trp repressor (1997) Biochemistry 36, 5612-5623.
Hornby, J.A.T., Luo, J.K., Stevens, J.M., Wallace, L.A., Kaplan, W., Armstrong, R.N., Dirr, H.W. Equilibrium folding of dimeric class Mu glutathione transferases involves a stable monomeric intermediate (2000) Biochemistry 39, 12336-12344.
Jaenicke, R. Folding and association of proteins (1987) Prog. Biophys.Mol.Biol. 49, 117-237.
Lane, T. (1992) in Analytical Ultracentrifugation in Biochemistry and Polymer Science pp 90-125. Redwood press Ltd, Cambridge, England.
Lee, H.J and Chang, G.G. Guanidine hydrochloride induced reversible dissociation and denaturation of Duck δ2-crystallin. (2000) Eur. J. Biochem. 267, 3979-3985.
Ludwig, M.L., Metzger, A.L., Pattridge, K.A. and Stallings, W.C. Manganese superoxide dismutase from Thermus thermophilus. A structural model refined at 1.8 A resolution. (1991) J Mol Biol. 219, 335-338.
Ludwig, M.L., Pattridge, K.A and Stallings, W.C. Manganese superoxide dismutase. In Manganese in metabolism and enzyme function (ed Schramm, V.L and Wedler, F.C). p405. (1986) Academic press, Orlando, Florida.
Noland, B.W., Dangott, L.J and Baldwin, T.O., Folding, stability and physical properties of the alpha subunit of Bacterial Luciferase (1999) Biochemistry 38,16136-16145.
Silinski, P., Allingham, M.J. and Fitzgerald, M.C. Guanidine-induced equilibrium unfolding of a homo-hexameric enzyme 4-Oxalocrotonate tautomerase (4-OT) (2001) Biochemistry 40, 4493-4502.
Stallings, W.C. Bull, C., Fee, J.A., Lah, M.S and Ludwig, M.L. Iron and Manganese Superoxide Dismutases: Catalytic Inferences from the structures. (1992) Molecular Biology of Free Radical Scavenging Systems, 193-211.
Shyu, YC., Chiu, C.C. and Lin, F.P. Cloning, sequence, expression and characterization of the manganese superoxide dismutase gene from vibrio alginolyticus (1999) Biochem. Mol. Biol. Int. 47, 803-814.
Taubes, G. Misfolding the way to disease (1996) Science 271, 1493-1495.
Yahara, O., Hashimoto, K., taniguchi, N., Ishikawa, M., Sato, Y., Yamashita, H., and Chno, H. (1991) Res. Commun. Chem. Pathol. Pharmacol 72, 315-326.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔