(100.26.179.251) 您好!臺灣時間:2021/04/12 22:07
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:林淑娟
研究生(外文):Shu-Chuan Lin
論文名稱:連接片段長度及醣基化程度對於根黴菌之葡糖澱粉酵素之影響
論文名稱(外文):The effects of linker length and glycosylation in glucoamylase from Rhizopus oryzae
指導教授:張大慈
指導教授(外文):Margaret Dah-Tsyr Chang
學位類別:碩士
校院名稱:國立清華大學
系所名稱:生命科學系
學門:生命科學學門
學類:生物學類
論文種類:學術論文
論文出版年:2003
畢業學年度:91
語文別:中文
論文頁數:67
中文關鍵詞:葡糖澱粉酵素根黴菌麵包酵母連接片段醣基化
外文關鍵詞:glucoamylaseRhizopus oryzaeSaccharomyces cerevisiaelinkerglycosylation
相關次數:
  • 被引用被引用:0
  • 點閱點閱:175
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
葡糖澱粉酵素 (glucoamylase, 1,4-α-D-glucan glucohydrolase, EC 3.2.1.3),為水解酶的一種,可以催化多醣類的裂解。其作用由 -1,4和 -1,6鍵結的非還原端開始,進而水解出一個個的 -葡萄糖。此酵素來源相當廣泛,從動物、植物和微生物中皆可分離而取得,其中又以製備最為容易的微生物為主要的市場來源。葡糖澱粉酵素在工業上之應用已有多年歷史,例如澱粉的加工、糖漿的製作及酒精飲料的製成等等,而其他新的用途與應用也被不斷地開發與研究中。在本實驗中我們使用麵包酵母 (Saccharomyces cerevisiae)來表現根黴菌 (Rhizopus oryzae)之葡糖糖澱粉酵素。根黴菌的葡糖糖澱粉酵基因包含604個胺基酸,其構造大致可分為三個部分:一是具有吸附澱粉能力的區域,一是具有催化能力的區域,另一個則是負責連接這兩個功能性區域的連接片段。首先,我們將重組之葡糖澱粉酵素置於不同宿主中進行表現,篩選最佳的表現宿主、培養條件及純化方法,結果發現在適當的培養及純化下可得到大量的蛋白質產物。其次,在蛋白質功能性分析的實驗中,我們構築了一系列於澱粉結合區及連接片段縮短的葡糖澱粉酵素之突變株,分別名為wt-GA (WT)、GAΔ26-131 (L)、GAΔ26-145 (d1)、GAΔ26-160 (d2)和 GAΔ26-167 (cd)。藉由觀察各個突變株在功能及穩定上性質的改變以釐清該酵素不同區域的真實功能與關聯性。實驗結果顯示連接片段的長度的確會影響該酵素的表現及功能,此外其對蛋白質的結構也有很大的影響,完整的連接片段具有穩定酵素催化區二級結構的功能,至於更詳細的機制與功能分析我們將進一步繼續探討與研究。

Fungal glucoamylases (1,4-a-D-glucan glucohydrolase, EC 3.2.1.3, GA) are exo-acting starch hydrolase releasing -D-glucose from the nonreducing ends of starch and related substrates. Glucoamylases are glycoproteins that are secreted, and widely used in the production of sweeteners and ethanol. The Rhizopus GA gene encodes 604 amino acids and the mature GA consists of 579 amino acids with a starch binding domain and a catalytic domain connected by a putative highly glycosylated linker region. The function and the structure of the catalytic and starch binding domains have been thoroughly investigated, so in our study we focus on the roles that the linker length and the degree of glycosylation played on the enzymatic function. We have constructed a series of truncated mutants in the linker region and expressed the recombinant enzymes in Saccharomyces strain. In addition, we further investigated the positions of the glycans in GA employing N-terminal peptide sequencing and mass spectrometry.

Table of Contents
Abstract (Chinese)……………i
Abstract (English) ……………ii
Acknowledgement ……………iii
Table of Contents ……………iv
List of Tables ……………vi
List of Figures ……………vii
Abbreviations ……………ix
1. Introduction...1
1.1. Glucoamylase
2. Materials and Methods...3
2.1. Microbial strains and plasmid
2.2. Culture media
2.3. Construction of GA mutants with a series of internal deletions in the linker region
2.4. Competent cell preparation and transformation
2.5. Yeast transformation
2.6. Culture conditions for glucoamylase production
2.7. Glucoamylase activity detection and assay
2.7.1 Plate assay for GA activity
2.7.2 Quantitatively assay for GA activity
2.8. Polyacrylamide gel electrophoresis
2.9. Western blotting analysis
2.10 Purification of recombinant GAs
2.11 Protein concentration
2.12 N-terminal peptide sequence analysis
2.13 pI determination
2.14 Posttranslational modification
2.14.1 Determination of N-linked glycosylation
2.14.2 Determination of O-linked glycosylation
2.15 Circular Dichroism spectrometry
2.16 Effect of temperature and pH on enzyme stability and activity
2.17 Mass determination
2.18 Inhibition of GA by acarbose
2.19 Crystallization and X-ray measurements
3. Results and Discussion...18
3.1. Construction of GA mutants
3.2. Expression and secretion of glucoamylas
3.3. Production and purification of GA
3.4. Protein identification by SDS-PAGE and Western blot
3.5. Glucoamylase activity test
3.5.1 Plate assay for GA activity
3.5.2 Quantitative assay for GA activity
3.6. Circular Dichroism Spectroscopy and Thermal Stability
3.7. Glycoprotein analysis
3.7.1 Determining the molecular weight of GA
3.7.2 Glycosylation site mapping of GA
3.7.3 Determining N-linked glycosylation
3.7.4 Determining O-linked glycosylation
3.7.5 Identification of glycosylation sites in GA
3.8 Inhibition of GA by acarbose
3.9 Structure of glucoamylase
4. References...32
5. Tables...35
6. Figures...40

1. Coutinho, P.M. and P.J. Reilly, Glucoamylase structural, functional, and evolutionary relationships. Proteins, 1997. 29(3): p. 334-47.
2. Chiba, S., Molecular mechanism in alpha-glucosidase and glucoamylase. Biosci Biotechnol Biochem, 1997. 61(8): p. 1233-9.
3. Tanaka, Y., et al., Comparison of amino acid sequences of three glucoamylases and their structure-function relationships. Agric Biol Chem, 1986. 50(4): p. 965-9.
5. Aleshin, A., et al., Crystal structure of glucoamylase from Aspergillus awamori var. X100 to 2.2-A resolution. J Biol Chem, 1992. 267(27): p. 19291-8.
6. Aleshin, A.E., L.M. Firsov, and R.B. Honzatko, Refined structure for the complex of acarbose with glucoamylase from Aspergillus awamori var. X100 to 2.4-A resolution. J Biol Chem, 1994. 269(22): p. 15631-9.
7. Aleshin, A.E., et al., Refined crystal structures of glucoamylase from Aspergillus awamori var. X100. J Mol Biol, 1994. 238(4): p. 575-91.
8. Harris, E.M., et al., Refined structure for the complex of 1-deoxynojirimycin with glucoamylase from Aspergillus awamori var. X100 to 2.4-A resolution. Biochemistry, 1993. 32(6): p. 1618-26.
9. Stoffer, B., et al., Refined structure for the complex of D-gluco-dihydroacarbose with glucoamylase from Aspergillus awamori var. X100 to 2.2 A resolution: dual conformations for extended inhibitors bound to the active site of glucoamylase. FEBS Lett, 1995. 358(1): p. 57-61.
10. Jacks, A.J., et al., 1H and 15N assignments and secondary structure of the starch-binding domain of glucoamylase from Aspergillus niger. Eur J Biochem, 1995. 233(2): p. 568-78.
11. Sorimachi, K., et al., Solution structure of the granular starch binding domain of glucoamylase from Aspergillus niger by nuclear magnetic resonance spectroscopy. J Mol Biol, 1996. 259(5): p. 970-87.
12. Sorimachi, K., et al., Solution structure of the granular starch binding domain of Aspergillus niger glucoamylase bound to beta-cyclodextrin. Structure, 1997. 5(5): p. 647-61.
13. Sauer, J., et al., Stability and function of interdomain linker variants of glucoamylase I from Aspergillus niger. Biochemistry, 2001. 40: p. 9336-46.
14. Semimaru, T., et al., Function analysis of the threonine- and serine-rich Gp-I domain of glucoamylase I from Aspergillus awamori var. kawachi. Appl Environ Microbiol, 1995. 61(8): p. 2885-90.
15. Chen, D.C., B.-C.Y. and Tsong Teh Kuo, One-step transformation of yeast in stationary phase. Current Genetics, 1991. 21: p. 83-4.
16. Wang, C., et al., Influence of the carbohydrate moiety on the stability of glycoproteins. Biochemistry, 1996. 35(23): p. 7299-306.
17. Innis, M.A., et al., Expression, glycosylation, and secretion of an Aspergillus glucoamylase by Saccharomyces cerevisiae. Science, 1985. 228: p. 21-6.
18. Goto, M., et al., Analysis of the raw starch-binding domain by mutation of a glucoamylase from Aspergillus awamori var. kawachi expressed in Saccharomyces cerevisiae. Appl Environ Microbiol, 1994. 60(11): p. 3926-30.
19. Takahashi, S., et al., Function of the prosequence for in vivo folding and secretion of active Rhizopus oryzae lipase in Saccharomyces cerevisiae. Appl Environ Microbiol, 2001. 55: p. 454-62.
20. Dube, S., et al., Glycosylation at specific sites of erythropoietin is essential for biosynthesis, secretion, and biological function. J Biol Chem, 1998. 263: p. 17516-21.
21. Chen, H.M., et al., Substitution of asparagine residues in Aspergillus awamori glucoamylase by site-directed mutagenesis to eliminate N-glycosylation and inactivation by deamidation. Biochem J, 1994. 301: p. 275-81.
22 Sierks, M.R., et al., Functional roles and subsite locations of Leu177, Trp178 and Asn182 of Aspergillus awamori glucoamylase determined by site-directed mutagenesis. Protein Eng, 1993. 6(1): p. 75-9.
23. Hsiu-mei Chen, U.B., P.J. Reilly and Clark Ford, Increased Thermostability for Asn182Ala Mutant Aspergillus awamori Glucoamylase. Biotechnol Bioeng, 1994. 43: p. 101-5.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. Characterizationofprotein-glycaninteractionandfunction-linkerandligandbindingdomainofglucoamylase
2. 根黴菌之葡糖澱粉酵素的連接片段區域對於吸附澱粉區域的功能和結構之影響
3. 酵母菌表現之葡糖澱粉酵素之功能及穩定性分析─連接片段長度及醣基化之影響
4. 根黴菌之葡糖澱粉酵素在酵母菌中的突變及功能分析
5. (一)米根黴糖澱粉酶澱粉結合區域的晶體結構與多醣結合路徑之研究; (二)致病性鉤端螺絲體之脂蛋白LipL32與鈣離子及纖維連接蛋白的結合能力之研究
6. 米根黴菌在攪拌式發酵槽中生產L(+)-乳酸之研究
7. 米根黴菌葡萄糖澱粉酶之澱粉結合區與異麥芽寡糖複合物晶體結構之研究
8. 米根黴菌葡糖澱粉酶之澱粉結合蛋白與β環形糊精及麥芽七糖複合物晶體結構之研究
9. 利用澱粉吸附區域及血漿凝集素發展新穎性細菌檢測系統
10. 米根黴葡糖澱粉酶的第二十一族醣類結合模組水溶液結構之研究暨綠豆非專一性脂質轉運蛋白一型結構之研究
11. 連結胜肽對蛋白質表現與純化之影響
12. 1. 以二甲基甲醯胺調控醣基化反應合成2,6-雙去氧-a-醣苷鍵,並延伸至一鍋化、迭代醣基化反應。2. 利用保護基Picolinoyl -對醣受體產生遠端引導效應合成去氧-b-醣苷鍵
13. 利用PCS生物反應器以Rhizopus oligosporus NTU 5進行黑豆漿發酵並探討異黃酮去醣基化效率及生理活性之研究
14. 分析WNT-1, BMP2及EGFR啟動子之G-quadruplex形成序列
15. 以結構為基礎探討人類嗜酸性球核醣核酸水解酶與肝素之結合模式
 
系統版面圖檔 系統版面圖檔