|
1. Coutinho, P.M. and P.J. Reilly, Glucoamylase structural, functional, and evolutionary relationships. Proteins, 1997. 29(3): p. 334-47. 2. Chiba, S., Molecular mechanism in alpha-glucosidase and glucoamylase. Biosci Biotechnol Biochem, 1997. 61(8): p. 1233-9. 3. Tanaka, Y., et al., Comparison of amino acid sequences of three glucoamylases and their structure-function relationships. Agric Biol Chem, 1986. 50(4): p. 965-9. 5. Aleshin, A., et al., Crystal structure of glucoamylase from Aspergillus awamori var. X100 to 2.2-A resolution. J Biol Chem, 1992. 267(27): p. 19291-8. 6. Aleshin, A.E., L.M. Firsov, and R.B. Honzatko, Refined structure for the complex of acarbose with glucoamylase from Aspergillus awamori var. X100 to 2.4-A resolution. J Biol Chem, 1994. 269(22): p. 15631-9. 7. Aleshin, A.E., et al., Refined crystal structures of glucoamylase from Aspergillus awamori var. X100. J Mol Biol, 1994. 238(4): p. 575-91. 8. Harris, E.M., et al., Refined structure for the complex of 1-deoxynojirimycin with glucoamylase from Aspergillus awamori var. X100 to 2.4-A resolution. Biochemistry, 1993. 32(6): p. 1618-26. 9. Stoffer, B., et al., Refined structure for the complex of D-gluco-dihydroacarbose with glucoamylase from Aspergillus awamori var. X100 to 2.2 A resolution: dual conformations for extended inhibitors bound to the active site of glucoamylase. FEBS Lett, 1995. 358(1): p. 57-61. 10. Jacks, A.J., et al., 1H and 15N assignments and secondary structure of the starch-binding domain of glucoamylase from Aspergillus niger. Eur J Biochem, 1995. 233(2): p. 568-78. 11. Sorimachi, K., et al., Solution structure of the granular starch binding domain of glucoamylase from Aspergillus niger by nuclear magnetic resonance spectroscopy. J Mol Biol, 1996. 259(5): p. 970-87. 12. Sorimachi, K., et al., Solution structure of the granular starch binding domain of Aspergillus niger glucoamylase bound to beta-cyclodextrin. Structure, 1997. 5(5): p. 647-61. 13. Sauer, J., et al., Stability and function of interdomain linker variants of glucoamylase I from Aspergillus niger. Biochemistry, 2001. 40: p. 9336-46. 14. Semimaru, T., et al., Function analysis of the threonine- and serine-rich Gp-I domain of glucoamylase I from Aspergillus awamori var. kawachi. Appl Environ Microbiol, 1995. 61(8): p. 2885-90. 15. Chen, D.C., B.-C.Y. and Tsong Teh Kuo, One-step transformation of yeast in stationary phase. Current Genetics, 1991. 21: p. 83-4. 16. Wang, C., et al., Influence of the carbohydrate moiety on the stability of glycoproteins. Biochemistry, 1996. 35(23): p. 7299-306. 17. Innis, M.A., et al., Expression, glycosylation, and secretion of an Aspergillus glucoamylase by Saccharomyces cerevisiae. Science, 1985. 228: p. 21-6. 18. Goto, M., et al., Analysis of the raw starch-binding domain by mutation of a glucoamylase from Aspergillus awamori var. kawachi expressed in Saccharomyces cerevisiae. Appl Environ Microbiol, 1994. 60(11): p. 3926-30. 19. Takahashi, S., et al., Function of the prosequence for in vivo folding and secretion of active Rhizopus oryzae lipase in Saccharomyces cerevisiae. Appl Environ Microbiol, 2001. 55: p. 454-62. 20. Dube, S., et al., Glycosylation at specific sites of erythropoietin is essential for biosynthesis, secretion, and biological function. J Biol Chem, 1998. 263: p. 17516-21. 21. Chen, H.M., et al., Substitution of asparagine residues in Aspergillus awamori glucoamylase by site-directed mutagenesis to eliminate N-glycosylation and inactivation by deamidation. Biochem J, 1994. 301: p. 275-81. 22 Sierks, M.R., et al., Functional roles and subsite locations of Leu177, Trp178 and Asn182 of Aspergillus awamori glucoamylase determined by site-directed mutagenesis. Protein Eng, 1993. 6(1): p. 75-9. 23. Hsiu-mei Chen, U.B., P.J. Reilly and Clark Ford, Increased Thermostability for Asn182Ala Mutant Aspergillus awamori Glucoamylase. Biotechnol Bioeng, 1994. 43: p. 101-5.
|