(18.204.2.190) 您好!臺灣時間:2021/04/22 08:25
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:張弘
研究生(外文):Chang Hung
論文名稱:利用酵母菌研究動物病毒Sindbisvirus的複製
論文名稱(外文):The use of yeast to study the replication of Sindbis virus
指導教授:林志侯廖經倫
指導教授(外文):Thy-Hou LinChinglen Liao
學位類別:碩士
校院名稱:國立清華大學
系所名稱:生命科學系
學門:生命科學學門
學類:生物學類
論文種類:學術論文
論文出版年:2003
畢業學年度:91
語文別:中文
論文頁數:68
中文關鍵詞:酵母菌動物病毒複製
外文關鍵詞:yeastSindbis virusreplication
相關次數:
  • 被引用被引用:0
  • 點閱點閱:85
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文係以酵母菌S. cerevisiae為模式來研究SV之複製,利用SV-replicase replicon必須經由RNA複製步驟才能表現外源基因之特性,將其構築於可在酵母菌中複製之載體,並以hygromycin抗藥基因為篩選標的(selectable marker),構築於病毒次基因體RNA啟動子(subgenomic promoter)之後,因此可藉由抗藥性菌落之產生以及RT-PCR偵測負股RNA之形成,做為判斷病毒RNA是否複製之依據。為了確認所構築之重組質體S1/Rep21/hyg的確是經由完整RNA複製之步驟,來提供酵母菌對hygromycin之抗藥性,因此刪除複製中所必需之3’UTR序列及破壞複製所需之replicase,結果發現S1/Rep21/hyg/△3’UTR仍可產生抗藥性菌落且可偵測到負股RNA合成,而S1/Rep21/hyg/△P雖不能產生抗藥性菌落但卻可偵測到負股RNA合成,因此推論在抗hygromycin基因之後有一在載體上之反向DNA啟動子。為解決此干擾,進一步將S1/Rep21/hyg直線化,結果證實以直線化之S1/Rep21/hyg確實可提供酵母菌對hygromycin之抗藥性,因此建立了S1/Rep21/hyg可在酵母菌中複製之系統。此外,並針對已知在哺乳動物細胞中較不毒之nsP2(P726L)突變與野生型nsP2比較,發現S1/Rep21/hyg比S1/Rep21/hyg_nsP2(wt)者菌落生長較大且其生長速率在進入log phase後變更快,這可能是因P726L突變造成S1/Rep21/hyg複製時對酵母菌比較不毒之故。故本論文建立以酵母菌為良好的研究模式來探討SV之複製,未來更可進一步研究宿主因子與SV複製間之交互作用,藉此對SV在細胞中複製之分子機轉能有深入之瞭解。

In this study, we use yeast S. cerevisiae as a model to study the replication of sindbis virus (SV), which is a positive sense, single-stranded animal RNA virus belonging to alphavirus. To serve as a viral expression vector, foreign genes are often constructed under control by SV subgenomic RNA promoter, so that the expression of the given foreign genes must be the result of SV replication process. Characteristically, it is sufficient for SV to complete viral RNA replication only through its replicase complex derived from virus non-structural genes. In order to study SV replication in yeast system, we constructed a series of SV-replicase replicon in a yeast expression plasmid (pYES-X1) and used the hygromycin resistant gene as a selectable marker that was under the subgenomic RNA promoter. The generation of hygromycin-resistant colonies and the detection of virus negative strand RNA by RT-PCR were the two major assessments to evaluate SV replication in yeast system. Our results show that S1/Rep21/hyg could result in hygromycin resistant yeast colonies. To examine whether this was the outcome of SV RNA replication, we deleted the 3’UTR sequence which is required for replication, and we found S1/Rep21/hyg/△3’UTR was unexpectedly able to generate resistant colonies and negative strand of virus RNA. In contrast, S1/Rep21/hyg/△P, whose replicase was partially deleted, could not generate resistant colonies but was still able to synthesize the negative strand of virus RNA. These results suggest that there may be a reverse DNA promoter behind hygromycin resistant gene on vector that initiates the synthesis of negative strand of virus RNA. To overcome this interference, we linearized the plasmid of S1/Rep21/hyg and found that the linear form of S1/Rep21/hyg was indeed able to form resistant colonies, clearly suggesting that S1/Rep21/hyg is capable of replication in yeast. In conclusion, this study establishes a SV replication system in yeast, and hopefully this system can be extended to study the interactions between host factors and SV. So we can further realize the molecular mechanism of SV replication in the cellular levels.

目 錄 ………………………………………………………… 1
中文摘要 …………………………………………………… 2
英文摘要 ……………………………………………………… 3
第一章 前言 ………………………………………………… 5
第二章 材料與方法 ………………………………………… 11
第三章 結果 ………………………………………………… 25
第四章 討論 ………………………………………………… 32
第五章 參考文獻 ………………………………………… 39
第六章 圖表 ………………………………………………… 43
第七章 附錄 ………………………………………………… 51

1. Ahola, T., and L. Kaariainen. 1995. Reaction in alphavirus mRNA capping: formation of a covalent complex of nonstructural protein nsP1 with 7-methyl-GMP. Proc Natl Acad Sci U S A 92:507-11.
2. Calisher, C. H. 1994. Medically important arboviruses of the United States and Canada. Clin Microbiol Rev 7:89-116.
3. de Groot, R. J., W. R. Hardy, Y. Shirako, and J. H. Strauss. 1990. Cleavage-site preferences of Sindbis virus polyproteins containing the non-structural proteinase. Evidence for temporal regulation of polyprotein processing in vivo. Embo J 9:2631-8.
4. De, I., S. G. Sawicki, and D. L. Sawicki. 1996. Sindbis virus RNA-negative mutants that fail to convert from minus-strand to plus-strand synthesis: role of the nsP2 protein. J Virol 70:2706-19.
5. De Jong, W., and P. Ahlquist. 1995. Host-specific alterations in viral RNA accumulation and infection spread in a brome mosaic virus isolate with an expanded host range. J Virol 69:1485-92.
6. Diez, J., M. Ishikawa, M. Kaido, and P. Ahlquist. 2000. Identification and characterization of a host protein required for efficient template selection in viral RNA replication. Proc Natl Acad Sci U S A 97:3913-8.
7. Edwards, J., E. Mann, and D. T. Brown. 1983. Conformational changes in Sindbis virus envelope proteins accompanying exposure to low pH. J Virol 45:1090-7.
8. Frolov, I., R. Hardy, and C. M. Rice. 2001. Cis-acting RNA elements at the 5' end of Sindbis virus genome RNA regulate minus- and plus-strand RNA synthesis. Rna 7:1638-51.
9. Gamarnik, A. V., and R. Andino. 1996. Replication of poliovirus in Xenopus oocytes requires two human factors. Embo J 15:5988-98.
10. Gomez de Cedron, M., N. Ehsani, M. L. Mikkola, J. A. Garcia, and L. Kaariainen. 1999. RNA helicase activity of Semliki Forest virus replicase protein NSP2. FEBS Lett 448:19-22.
11. Hardy, W. R., and J. H. Strauss. 1989. Processing the nonstructural polyproteins of sindbis virus: nonstructural proteinase is in the C-terminal half of nsP2 and functions both in cis and in trans. J Virol 63:4653-64.
12. Ishikawa, M., M. Janda, M. A. Krol, and P. Ahlquist. 1997. In vivo DNA expression of functional brome mosaic virus RNA replicons in Saccharomyces cerevisiae. J Virol 71:7781-90.
13. Janda, M., and P. Ahlquist. 1993. RNA-dependent replication, transcription, and persistence of brome mosaic virus RNA replicons in S. cerevisiae. Cell 72:961-70.
14. Kaariainen, L., and M. Ranki. 1984. Inhibition of cell functions by RNA-virus infections. Annu Rev Microbiol 38:91-109.
15. Kamer, G., and P. Argos. 1984. Primary structural comparison of RNA-dependent polymerases from plant, animal and bacterial viruses. Nucleic Acids Res 12:7269-82.
16. Kuhn, R. J., Z. Hong, and J. H. Strauss. 1990. Mutagenesis of the 3' nontranslated region of Sindbis virus RNA. J Virol 64:1465-76.
17. LaStarza, M. W., J. A. Lemm, and C. M. Rice. 1994. Genetic analysis of the nsP3 region of Sindbis virus: evidence for roles in minus-strand and subgenomic RNA synthesis. J Virol 68:5781-91.
18. Lee, W. M., M. Ishikawa, and P. Ahlquist. 2001. Mutation of host delta9 fatty acid desaturase inhibits brome mosaic virus RNA replication between template recognition and RNA synthesis. J Virol 75:2097-106.
19. Lemm, J. A., T. Rumenapf, E. G. Strauss, J. H. Strauss, and C. M. Rice. 1994. Polypeptide requirements for assembly of functional Sindbis virus replication complexes: a model for the temporal regulation of minus- and plus-strand RNA synthesis. Embo J 13:2925-34.
20. Levis, R., B. G. Weiss, M. Tsiang, H. Huang, and S. Schlesinger. 1986. Deletion mapping of Sindbis virus DI RNAs derived from cDNAs defines the sequences essential for replication and packaging. Cell 44:137-45.
21. Li, G., and C. M. Rice. 1993. The signal for translational readthrough of a UGA codon in Sindbis virus RNA involves a single cytidine residue immediately downstream of the termination codon. J Virol 67:5062-7.
22. Niesters, H. G., and J. H. Strauss. 1990. Defined mutations in the 5' nontranslated sequence of Sindbis virus RNA. J Virol 64:4162-8.
23. Niesters, H. G., and J. H. Strauss. 1990. Mutagenesis of the conserved 51-nucleotide region of Sindbis virus. J Virol 64:1639-47.
24. Noueiry, A. O., J. Chen, and P. Ahlquist. 2000. A mutant allele of essential, general translation initiation factor DED1 selectively inhibits translation of a viral mRNA. Proc Natl Acad Sci U S A 97:12985-90.
25. Osman, T. A., and K. W. Buck. 1997. The tobacco mosaic virus RNA polymerase complex contains a plant protein related to the RNA-binding subunit of yeast eIF-3. J Virol 71:6075-82.
26. Ou, J. H., E. G. Strauss, and J. H. Strauss. 1981. Comparative studies of the 3'-terminal sequences of several alpha virus RNAs. Virology 109:281-9.
27. Peranen, J., P. Laakkonen, M. Hyvonen, and L. Kaariainen. 1995. The alphavirus replicase protein nsP1 is membrane-associated and has affinity to endocytic organelles. Virology 208:610-20.
28. Price, B. D., M. Roeder, and P. Ahlquist. 2000. DNA-Directed expression of functional flock house virus RNA1 derivatives in Saccharomyces cerevisiae, heterologous gene expression, and selective effects on subgenomic mRNA synthesis. J Virol 74:11724-33.
29. Quadt, R., C. C. Kao, K. S. Browning, R. P. Hershberger, and P. Ahlquist. 1993. Characterization of a host protein associated with brome mosaic virus RNA-dependent RNA polymerase. Proc Natl Acad Sci U S A 90:1498-502.
30. Rikkonen, M., J. Peranen, and L. Kaariainen. 1992. Nuclear and nucleolar targeting signals of Semliki Forest virus nonstructural protein nsP2. Virology 189:462-73.
31. Sawicki, D. L., and S. G. Sawicki. 1993. A second nonstructural protein functions in the regulation of alphavirus negative-strand RNA synthesis. J Virol 67:3605-10.
32. Sawicki, D. L., S. G. Sawicki, S. Keranen, and L. Kaariainen. 1981. Specific Sindbis virus-coded function for minus-strand RNA synthesis. J Virol 39:348-58.
33. Shirako, Y., E. G. Strauss, and J. H. Strauss. 2000. Suppressor mutations that allow sindbis virus RNA polymerase to function with nonaromatic amino acids at the N-terminus: evidence for interaction between nsP1 and nsP4 in minus-strand RNA synthesis. Virology 276:148-60.
34. Shirako, Y., and J. H. Strauss. 1994. Regulation of Sindbis virus RNA replication: uncleaved P123 and nsP4 function in minus-strand RNA synthesis, whereas cleaved products from P123 are required for efficient plus-strand RNA synthesis. J Virol 68:1874-85.
35. Strauss, J. H., and E. G. Strauss. 1994. The alphaviruses: gene expression, replication, and evolution. Microbiol Rev 58:491-562.
36. Tomita, Y., T. Mizuno, J. Diez, S. Naito, P. Ahlquist, and M. Ishikawa. 2003. Mutation of host DnaJ homolog inhibits brome mosaic virus negative-strand RNA synthesis. J Virol 77:2990-7.
37. Vasiljeva, L., A. Merits, P. Auvinen, and L. Kaariainen. 2000. Identification of a novel function of the alphavirus capping apparatus. RNA 5'-triphosphatase activity of Nsp2. J Biol Chem 275:17281-7.
38. Wang, Y. F., S. G. Sawicki, and D. L. Sawicki. 1994. Alphavirus nsP3 functions to form replication complexes transcribing negative-strand RNA. J Virol 68:6466-75.
39. Wickner, R. B. 1991. . p. 263-296. In J. R. Broach, Pringle, J. & Jones, E. W. (ed.), The Molecular and Cellular Biology of the Yeast Saccharomyces. (Cold Spring Harbor Lab. Press, Plainview, NY).

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔