(18.204.2.190) 您好!臺灣時間:2021/04/19 08:56
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:賴怡卉
研究生(外文):Yi-Hui Lai
論文名稱:以冷休克蛋白作為放線菌分類上質譜分析之標的蛋白
論文名稱(外文):A cold shock protein as the mass spectrometric biomarker for classification of actinomycetes
指導教授:許宗雄許宗雄引用關係
指導教授(外文):Tzong-Hsuing Hseu
學位類別:碩士
校院名稱:國立清華大學
系所名稱:生物技術研究所
學門:生命科學學門
學類:生物科技學類
論文種類:學術論文
論文出版年:2003
畢業學年度:91
語文別:中文
論文頁數:54
中文關鍵詞:放線菌質譜分析冷休克蛋白
外文關鍵詞:actinomycetesmass spectrometric analysiscold shock protein
相關次數:
  • 被引用被引用:0
  • 點閱點閱:128
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:14
  • 收藏至我的研究室書目清單書目收藏:0
利用質譜分析的方法,可以找到放線菌其中兩屬,分別為Microbispora 和Dactylosporangium,所特有的標的蛋白 (biomarker),並且能夠作為菌種分類的依據。這個蛋白質經過資料庫搜尋比對後發現可能是一種cold shock protein。為了更進一步了解這個cold shock protein,我們利用PCR把其中一個cold shock protein由另一隻放線菌株,S. ceolicolor中複製出來,並使用重組蛋白的方法製作出所需要的抗體。我們從Microbispora 和Dactylosporangium兩種菌屬中各挑選一隻菌,以及S. ceolicolor,進行低溫誘導(cold shock induction)的實驗,由蛋白質以及基因的層次來研究菌株裡cold shock protein的表現情形。結果發現這三隻菌的cold shock protein在低溫處理之下並沒有產生預期的大量表現,而是constitutive expression。另一方面,cold shock protein 的mRNA 卻會受到低溫誘導而增加表現量,然後隨著低溫處理的時間增加而慢慢減少終至消失。但是質譜分析的結果卻顯示這些菌的冷休克蛋白大小不能完全符合預期。所以如果要以冷休蛋白作為放線菌分類的依據,必須建立一個較嚴謹且標準化的放線菌培養條件,才能在質譜分析上達到較高的再現性。

A mass spectrometrically identified biomarker, possibly “cold shock protein” by database homologous searching, can be helpful to classify two genus of actinomycetes, Microbispora and Dactysporangium. To further characterize cold shock proteins, we amplified the gene of a cold shock from another genus of actinomycetes, S. coelicolor and make specific antibody against it. Cells were maintained at low temperature for 0~24 h, cold shock proteins and their mRNAs isolated from S.coelicolor, D. fusco-aurantiacum and M. amethystogenes were monitored by Western and Northern blot. The finding suggested cold shock proteins didn’t change as much as expected. Nevertheless, their mRNAs increased abruptly upon temperature downshift (cold shock after 1 h), started to decrease after 2 h and finally disappeared at 24 h. However, findings of MALDI-LTOF mass analysis of these strains were not analogous to our expected results. The m/z values of their cold shock proteins were different from that found by a previous report. Therefore, whether cold shock protein is suitable to be a biomarker in mass analysis for actinomycetes classification should be further evaluated. We should improve the mass spectrometric reproducibility by strictly establishing more standardized actinomysetes culture condition.

List of Figures---------------------------------------------------------------------- ii
一、 中文摘要-------------------------------------------------------------------- 1
二、 英文附錄
1. Abstract----------------------------------------------------------2
2. Introduction----------------------------------------------------- 3
3. Materials and Methods---------------------------------------- 7
4. Results---------------------------------------------------------- 15
5. Discussion------------------------------------------------------ 20
6. Acknowledgments--------------------------------------------- 23
7. Reference--------------------------------------------------------24
List of Figures
Fig. 1. (A) Alignment of rScoF2 with CspA in E.coli and all cold shock proteins in S.coelicolor (B) Cluster analysis of rScoF2 and cold shock proteins in S.coelicolor.--------------------------------------------------------------------------------------32
Fig. 2. A 204-bp DNA fragment was amplified by S. coelicolor genomic PCR with (A) no DMSO;(B) 5% DMSO;(C) 10% DMSO. -----------------------------------------------33
Fig. 3. A 204-bp DNA fragment was amplified by D. fusco-aurantiacum genomic PCR
with 10% DMSO. ------------------------------------------------------------------------------34
Fig. 4. A 204-bp DNA fragment was amplified by M. amethystogene genomic PCR with
10% DMSO.-------------------------------------------------------------------------------------35
Fig. 5. 15% SDS-PAGE analysis of GST-ScoF2 overexpression in BL21 (DE3) cells. ----- 36
Fig. 6. 12% SDS-PAGE analysis of GST-ScoF2 purification. -----------------------------------37
Fig. 7. 12% SDS-PAGE analysis of GST-ScoF2 purification (thrombin treated). -------------38
Fig. 8. 15% SDS-PAGE analysis of concentrated GST-ScoF2 and rScoF2. --------------------39
Fig. 9. Alignment of rScoF2 with CspA in E. coli and ScoF2-like proteins in
D. fusco-aurantiacum and M. amethystogenes-----------------------------------------------40
Fig. 10. Western blot of recombinant ScoF2 recognized by (A) Anti-6x His-tag
monoclonal antibody;(B) purified Anti-ScoF2 polyclonal------------------------------41
Fig. 11. Western blot of ScoF2 in S. coelicolor. (A)15% SDS-PAGE analysis of
S. coelicolor total protein. (B) ScoF2 expression upon cold shock. ----------------------42
Fig. 12. Western blot of ScoF2-like cold shock protein in D. fusco-aurantiacum.
(A) 15% SDS-PAGE analysis of D. fusco-aurantiacum total protein.
(B) ScoF2-like protein expression upon cold shock. --------------------------------------- 43
Fig. 13. Western blot of ScoF2-like cold shock protein in M. amethystogenes.
(A) 15% SDS-PAGE analysis of M. amethystogenes total protein.
(B) ScoF2-like protein expression upon cold shock. --------------------------------------- 44
Fig. 14. Northern Blot of scof2 mRNA in S.coelicolor. (A) Ribosomal RNAs.
(B) scof2 mRNA changes upon cold shock. ------------------------------------------------- 45
Fig. 15. Northern Blot of scof2-like mRNA in D. fusco-aurantiacum. (A) Ribosomal RNAs.
(B) scof2-like mRNA changes upon cold shock. ------------------------------------------- 46
Fig. 16 MALDI-LTOF spectrum of S. coelicolr cell extract.---------------------------------------- 47
Fig. 17 MALDI-LTOF spectrum of D. fusco-aurantiacum cell extract.--------------------------- 48
Fig. 18 MALDI-LTOP spectrum of D. aurantiacum cell extract.------------------------------------49
Fig. 19 MALDI-LTOF spectrum of M. amethystogenes cell extract.-------------------------------50
Fig. 20 MALDI-LTOF spectrum of M. chromogenes cell extract.----------------------------------51

Anhalt, J. P., and Fenselau, C. (1975). Identification of bacteria using mass spectrometry. Anal Chem 47, 219-25.
Arnold, R. J., and Reilly, J. P. (1998). Fingerprint matching of E. coli strains with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry of whole cells using a modified correlation approach. Rapid Commun Mass Spectrom 12, 630-6.
Arnold, R. J., Karty, J. A., Ellington, A. D., and Reilly, J. P. (1999). Monitoring the growth of a bacteria culture by MALDI-MS of whole cells. Anal Chem 71, 1990-6.
Av-Gay, Y., Aharonowitz, Y., and Cohen, G. (1992). Streptomyces contain a 7.0 kDa cold shock like protein. Nucleic Acids Res 20, 5478.
Bae, W., Jones, P. G., and Inouye, M. (1997). CspA, the major cold shock protein of Escherichia coli, negatively regulates its own gene expression. J Bacteriol 179, 7081-8.
Brandi, A., Pietroni, P., Gualerzi, C. O., and Pon, C. L. (1996). Post-transcriptional regulation of CspA expression in Escherichia coli. Mol Microbiol 19, 231-40.
Brandi, A., Spurio, R., Gualerzi, C. O., and Pon, C. L. (1999). Massive presence of the Escherichia coli 'major cold-shock protein' CspA under non-stress conditions. EMBO J 18, 1653-9.
Cain, T. C., Luman, D. M., and Henion, W. J., Jr. (1994). Differentiation of bacteria using protein profiles from matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Rapid Commun Mass Spectrom 8, 1026-30.
Claydon, M. A., Davey, S. N., Edwards-Jones, V., and Gordon, D. B. (1996). The rapid identification of intact microorganisms using mass spectrometry. Nat Biotechnol 14, 1584-6.
Cole, M. J., and Enke, C. G. (1991). Direct determination of phospholipid structures in microorganisms by fast atom bombardment triple quadrupole mass spectrometry. Anal Chem 63, 1032-8.
Dalluge, J. J. (2000). Mass spectrometry for direct determination of proteins in cells: applications in biotechnology and microbiology. Fresenius J Anal Chem 366, 701-11.
Demirev, P. A., Ho, Y. P., Ryzhov, V., and Fenselau, C. (1999). Microorganism identification by mass spectrometry and protein database searches. Anal. Chem 71, 2732 —38.
Derzelle, S., Hallet, B., Francis, K. P., Ferain, T., Delcour, J., and Hols, P. (2000). Changes in cspL, cspP, and cspC mRNA abundance as a function of cold shock and growth phase in Lactobacillus plantarum. J Bacteriol 182, 5105-13.
Derzelle, S., Hallet, B., Ferain, T., Delcour, J., and Hols, P. (2002). Cold shock induction of the cspL gene in Lactobacillus plantarum involves transcriptional regulation. J Bacteriol 184, 5518-23.
Erhard, M., von Dohren, H., and Jungblut, P. (1997). Rapid typing and elucidation of new secondary metabolites of intact cyanobacteria using MALDI-TOF mass spectrometry. Nat Biotechnol 15, 906-9.
Ermolenko, D. N., and Makhatadze, G. I. (2002). Bacterial cold-shock proteins. Cell Mol Life Sci 59, 1902-13.
Etchegaray, J. P., and Inouye, M. (1999). CspA, CspB, and CspG, major cold shock proteins of Escherichia coli, are induced at low temperature under conditions that completely block protein synthesis. J Bacteriol 181, 1827-30.
Fang, L., Jiang W., Bae, W., and Inouye, M. (1997). Promoter-independent cold-shock induction of cspA and its derepression at 37℃ by mRNA stabilization. Mol Microbiol 23, 355-64.
Fenn, J. B., Mann, M., Meng, C. K., Wong, S. F., and Whitehouse, C. M. (1989). Electrospray ionization for mass spectrometry of large biomolecules. Science 246, 64-71.
Fenselau, C. and Demirev, P. A. (2001). Characterization of intact microorganisms by MALDI mass spectrometry. Mass Spectrom Rev 20, 157-71.
Fox, A., Rosario, R. M. T., and Larsson, L. (1993). Monitoring of bacterial sugars and hydroxy fatty acids in dust from air conditioners by gas chromatography-mass spectrometry. Appl and Environ Microbiol 59, 4354-60
Goldstein, J., Pollitt, N. S., and Inouye, M. (1990). Major cold shock protein of Escherichia coli. Proc Natl Acad Sci USA 87, 283-7.
Goldenberg, D., Azar, I., and Oppenheim, A. B. (1996). Differential mRNA stability of the cspA gene in the cold-shock response of Escherichia coli. Mol Microbiol 19, 241-8.
Graumann, P, Wendrich, T. M., Weber, M. H., Schroder K., and Marahiel M. A. (1997). A family of cold shock proteins in Bacillus subtilis is essential for cellular growth and for efficient protein synthesis at optimal and low temperatures. Mol Microbiol 25, 741-56.
Graumann, P. L., and Marahiel, M. A. (1998). A superfamily of proteins that contain the cold-shock domain. Trends Biochem Sci 23, 286-90.
Hebraud, M., Dubois, E., Potier, P., and Labadie, J. (1994). Effect of growth temperatures on the protein levels in a psychrotrophic bacterium, Pseudomonas fragi. J Bacteriol 176, 4017-24.
Heller, D. N., Murphy, C. M., Cotter, R. J., Fenselau, C., and Uy, O. M. (1988). Constant neutral loss scanning for the characterization of bacterial phospholipids desorbed by fast atom bombardment. Anal Chem 60, 2787-91.
Holland, R. D., Wilkes, J. G., Rafii, F., Sutherland, J. B., Persons, C. C., Voorthees, K. J., and Lay, J. O., Jr. (1996). Rapid identification of intact whole bacteria based on spectral patterns using matrix-assisted laser desorption/ionization with time-of-flight mass spectrometry. Rapid Commum Mass Spectrom 10, 1227-1232.
Hsu, C. C., (2001), Mass spectrometric analysis of biomarkers for classification of actinomycetes.
Jiang, W., Jones, P., and Inouye, M. (1993). Chloramphenicol induces the transcription of the major cold shock gene of Escherichia coli, cspA. J Bacteriol 175, 5824-8.
Jiang, W., Fang, L., and Inouye, M. (1996) Complete growth inhibition of Escherichia coli by ribosome trapping with truncated cspA mRNA at low temperature. Genes Cells 1, 965-76.
Jiang, W., Hou, Y., and Inouye, M. (1997) CspA, the major cold-shock protein of Escherichia coli, is an RNA chaperone.. J Biol Chem 272, 196-202.
Jones, P. G., VanBogelen, R. A., and Neidhardt, F. C. (1987). Induction of proteins in response to low temperature in Escherichia coli. J Bacteriol 169, 2092-5.
Jones, P. G., and Inouye, M. (1994). The cold-shock response--a hot topic. Mol Microbiol 11, 811-8.
Karas, M., Bachmann, D. Bahr, U., and Hillenkamp, F. (1987). Matrix-assisted ultraviolet laser desorption of non-volatile compounds. Int. J. Mass. Spectrom. Ion. Processes 78, 53-68.
Kormanec, J., and Sevcikova, B. (2000). Identification and transcriptional analysis of a cold shock-inducible gene, cspA, in Streptomyces coelicolor A3(2). Mol Gen Genet 264, 251-6.
Krishnamurthy, T., and Ross, P. L. (1996). Rapid identification of bacteria by direct matrix-assisted laser desorption/ionization mass spectrometric analysis of whole cells, Rapid Commun Mass Spectrom 10, 1992-6.
Landsman, D. (1992). RNP-1, an RNA-binding motif, is conserved n the DNA-binding cold shock domain. Nucleic Acids Res 11, 2861-64.
Lay, J. O. Jr. (2001). MALDI-TOF mass spectrometry of bacteria. Mass Spectrom Rev 20, 172-94.
Lee, S. J., Xie, A., Jiang, W., Etchegaray, J. P., Jones, P. G., and Inouye, M. (1994). Family of the major cold-shock protein, CspA (CS7.4), of Escherichia coli, whose members show a high sequence similarity with the eukaryotic Y-box binding proteins. Mol Microbiol 11, 833-9.
Lidgard, R., and Duncan, M. W. (1995). Utility of matrix-assisted laser desorption ionization time-of-flight mass spectrometry for the analysis of low molecular weight compounds. Rapid Commun Mass Spectrom 9, 128-132.
Mikulik, K., Khanh-Hoang, Q., Halada, P., Bezouskova, S., Benada, O., and Behal, V. (1999). Expression of the Csp protein family upon cold shock and production of tetracycline in Streptomyces aureofaciens. Biochem Biophys Res Commun 19, 305-10.
Mitta, M., Fang, L., and Inouye, M. (1997). Deletion analysis of cspA of Escherichia coli: requirement of the AT-rich UP element for cspA transcription and the downstream box in the coding region for its cold shock induction. Mol Microbiol 26, 321-35.
Mortz, E., Vorm, O., Mann, M., and Roepstorff, P. (1994). Identification of proteins in polyacrylamide gels by mass spectrometric peptide mapping combined with database search. Biol Mass Spectrom 23, 249-61.
Nakashima, K., Kanamaru, K., Mizuno, T., and Horikoshi, K. (1996). A novel member of the cspA family of genes that is induced by cold shock in Escherichia coli. J Bacteriol 178, 2994-7.
Newkirk, K., Feng, W, Jiang, W., Tejero, R., Emerson, S. D., Inouye, M., and Montelione, G. T. (1994). Solution NMR structure of the major cold shock protein (CspA) from Escherichia coli: identification of a binding epitope for DNA. Proc Natl Acad Sci USA 91, 5114-8.
Phadtare, S., Alsina, J., and Inouye, M. (1999) Cold-shock response and cold-shock proteins. Curr Opin Microbiol 2, 175-80.
Roepstorff, P. (1997). Mass spectrometry in protein studies from genome to fuction. Curr Opin Biotechnol 8, 6-13.
Saenz, A. J., Petersen, C. E., Valentine, N. B., Gantt, S. L., Jarman, K. H., Kingsley, M. T., and Wahl, K. L. (1999). Reproducibility of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry for replicate bacterial culture analysis. Rapid Commun Mass Spectrom 13, 1580-5.
Schindelin, H., Jiang, W., Inouye, M., and Heinemann, U. (1994). Crystal structure of CspA, the major cold shock protein of Escherichia coli. Proc Natl Acad Sci USA 91, 5119-23.
Tanabe, H., Goldstein, J., Yang, M., and Inouye, M. (1992). Identification of the promoter region of the Escherichia coli major cold shock gene, cspA. J Bacteriol 174, 3867-73.
van Baar B.L. (2000). Characterisation of bacteria by matrix-assisted laser desorption/ionisation and electrospray mass spectrometry. FEMS Microbiol Rev 24, 193-219.
van Bogelen, R. A., and Neidhardt, F. C. (1990). Ribosomes as sensors of heat and cold shock in Escherichia coli. Proc Natl Acad Sci USA 87, 5589-93.
Welham, K. J., Domin, M. A., Scannell, D. E., Cohen, E., and Ashton, D. S. (1998). The characterization of micro-organisms by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Rapid Commun Mass Spectrom 12, 176-80.
Wouters, J. A., Sanders, J. W., Kok, J., de Vos, W. M., Kuipers, O., P. and Abee, T. (1998). Clustered organization and transcriptional analysis of a family of five csp genes of Lactococcus lactis MG1363. Microbiology 144, 2885-93.
Xia, B., Etchegaray, J. P., and Inouye, M. (2001). Nonsense mutations in cspA cause ribosome trapping leading to complete growth inhibition and cell death at low temperature in Escherichia coli. J Biol Chem 276, 35581-8.
Yamanaka, K., Fang, L., and Inouye, M. (1998). The CspA family in Escherichia coli: multiple gene duplication for stress adaptation. Mol Microbiol 27, 247-55.
Yamanaka, K., and Inouye, M. (2001). Induction of CspA, an E. coli major cold-shock protein, upon nutritional upshift at 37℃. Genes Cells 6, 279-90.
Yamanaka, K., and Inouye, M. (2001). Selective mRNA degradation by polynucleotide phosphorylase in cold shock adaptation in Escherichia coli. J Bacteriol 183, 2808-16.
Yates, J. R., Ⅲ. (1998). Database searching using mass spectrometry data. Electrophoresis 19, 893-900.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔