跳到主要內容

臺灣博碩士論文加值系統

(44.210.149.205) 您好!臺灣時間:2024/04/17 08:07
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:劉子平
研究生(外文):Tzu-Ping Liu
論文名稱:下電極材料對化學氣相沉積Ta2O5薄膜應用在動態隨機存取記憶體影響之研究
論文名稱(外文):The Study on the Influence of Various Bottom Electrode Materials to Ta2O5 Thin Films Deposited by Chemical Vapor Deposition for DRAMs Applications
指導教授:吳泰伯
指導教授(外文):Tai-Bor Wu
學位類別:博士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:91
語文別:中文
論文頁數:164
中文關鍵詞:五氧化二鉭動態隨機存取記憶體電極化學氣相沉積
外文關鍵詞:Ta2O5DRAMelectrodeCVD
相關次數:
  • 被引用被引用:4
  • 點閱點閱:214
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
本實驗針對以CVD方法鍍製Ta2O5薄膜在MIM結構上作一深入探討,研究重點在於藉由電極之選擇以進一步提高薄膜的介電常數及降低薄膜的漏電流,使其能夠應用在更高集積度DRAM上。
在Ta2O5/TaN薄膜的研究方面,發現TaN底電極在熱處理過程中會形成TaON層,導致Ta2O5薄膜之電容值隨熱處理溫度與時間之增加而降低。對於a-Ta2O5薄膜,在400℃作N2O電漿熱處理,其TaON層之成長符合線性氧化行為,但對於c-Ta2O5薄膜而言,同條件下熱處理則符合拋物線性氧化行為,400℃以下熱處理則符合線性氧化行為。
在Ta2O5/Ru薄膜的研究方面,隨Ru鍍膜溫度愈高,表面平整度愈高,(002)優選方向結晶性愈佳,Ta2O5薄膜(001)方向結晶性愈佳,58nm之c-Ta2O5/Ru-800℃介電常數可高達74,隨Ru電極鍍膜溫度愈高,a-Ta2O5其漏電流密度愈低。
在PtOx熱處理後結構之探討,熱處理後PtOx薄膜形成以Pt為主之HSG結構,隨O/Pt含量比增加,體積收縮率亦增加,Pt之結晶性隨氧殘留量減少而增加。而將Ta2O5鍍製在熱處理後之PtOx電極上,在1kHz時,a-Ta2O5/PtOx(HSG)介電常數可達70。Ta2O5/PtOx(HSG)與Ta2O5/Pt有相同漏電機制。
若直接將Ta2O5鍍製在未熱處理之PtOx電極情況下,隨熱處理溫度增加,Ta2O5/PtOx粗糙度增加導致漏電流增加,但對200℃熱處理之Ta2O5而言,PtOx之補氧效果可改善漏電流,其薄膜缺陷主要是氧空缺。另外我們發現藉由in-situ之PtOx還原反應所釋放出之氧可促進Ta2O5薄膜之化學氣相沉積反應,其可降低Ta2O5薄膜沉積反應之活化能。藉由PtOx之還原與Ta(OC2H5)5之氧化/分解反應可控制Ta2O5/PtOx薄膜之成長。

第一章 緒論
第二章 文獻回顧
第三章 Ta2O5與TaON雙層電容結構之介電常數與漏電流機構之探討
第四章 探討Ru底電極平整度與結晶性對Ta2O5薄膜特性影響
第五章 PtOx之退火結構與Ta2O5/PtOx(HSG)電性之探討
第六章 利用In-Situ PtOx之還原補償Ta2O5之氧空缺並促進其化學氣相沉積反應
第七章 結論
參考文獻

1. 新電子科技雜誌, “未來DRAM的發展趨勢”, 1998/12, 153.
2. 電子時報, “全球DRAM市場現況及展望”, 2002/07/09.
3. 張義昭, “新一代DRAM技術發展趨勢”, 電子資訊, 4(1), (1998) 4.
4. R. Ramesh, “Thin Film Ferroelectric Materials and Devices”, Kluwer Academic Publisher, (1997).
5. H. Ishiuchi, “Embedded DRAM Technologies”, IEDM 97, (1997) 33.
6. 王中樞, “內嵌式DRAM製程技術”, 電子月刊, 5(12), (1999) 106.
7. 蔡育奇, “系統LSI的記憶電容堆疊構造的現況及未來”, 電子月刊, 5(1), (1999) 161.
8. 張志祥, 吳泰伯, “G bit DRAM應用之強介電薄膜技術與發展”, 材料會訊, 4(3), (1997) 11.
9. 吳啟明, “利用濺鍍法以鎳酸鑭為電極製作動態記憶體之鈦酸緦鋇薄膜的研究”, 清華大學, 博士論文, (1997).
10. 施修正, “利用濺鍍法以鎳酸鑭為電極製作動態記憶體之鋯鈦酸鋇薄膜的研究”, 清華大學, 博士論文, (1997).
11. J. W. Kim, S. D. Nam, S. H. Lee, S. J. Won, W. D. Kim, C. Y. Yoo, Y. W. Park, S. I. Lee and M. Y. Lee, “Electrical Properties of Ru/Ta2O5/Ru Capacitor for 1 Giga-scale DRAMs and Beyond”, Extended Abstracts of the 1999 International Conference on Solid State Devices and Materials, Tokyo, (1999) 162.
12. I. Asano, M. Kunitomo, S. Yamamoto, R. Furukawa and T. Uemura, “1.5 nm Equivalent Thickness Ta2O5 High-k Dielectric with Rugged Si Suited for Mass Production of High Density DRAMs”, IEDM 98, (1998) 755.
13. C. Chaneliere, J. L. Autran, R. A. B. Devine and B. Balland, “Tantalum pentoxide (Ta2O5) thin films for advanced dielectric applications”, Materials Science and Engineering, R22 (1998) 269.
14. M. Kiyotoshi, S. Yamazaki, K. Eguchi, K. Hieda, Y. Fukzumi and M. Izuha, “In-Situ Multi-Step (IMS) CVD Process of (Ba,Sr)TiO3 Using Hot Wall Batch Type Reactor for DRAM Capacitor Dielectrics”, Symp. On VLSI Tech. Dig. of Tech. Papers, (1999) 101.
15. K. Hieda, K. Eguchi, N. Fukushima, T. Aoyama, K. Natori, M. Kiyotoshi and S. Yamazaki, “All Perovskite Capacitor (APEC) Technology for (Ba,Sr)TiO3 Capacitor Scaling toward 0.1 um Stacked DRAMs”, IEDM 98, (1998) 807.
16. H. Reisinger, H. Wendt, H. Wendt, G. Beitel and E. Fritsch, “Dielectric Breakdown, Reliability and Defect Density of (Ba0.7Sr0.3)TiO3 (BST)”, IEEE Symp. On VLSI Tech. Dig. of Tech. Papers, (1998) 58.
17. 張志祥, “利用低壓化學氣相沈積法製作動態隨機存取記憶體應用之(Ta2O5)1-x-(TiO2)x介電薄膜的研究”, 清華大學, 博士論文 (2000).
18. 黃雅凰, “下電極材料對Ta2O5化學氣相沉積薄膜特性影響之研究”, 清華大學, 碩士論文 (2001).
19. J. J. Sullivan, “A Guide to the Selection of MFC’s for Semiconductor Applications”, MKS Report (1985).
20. A. Love, S. Middleman and A. K. Hochberg, “The dynamics of bubblers as vapor delivery systems”, J. Crystal Growth, 129, (1993) 119.
21. S. D. Hersee and J. M. Ballingall, “The operation of metalorganic bubblers at reduced pressure”, J. Vac. Sci. Technol., A 8(2), (1990) 800.
22. H. Koyama, S. Tanimoto, K. Kuroiwa and Y. Tarui, “Thermal Properties of Various Ta Precursors Used in Chemical Vapor Deposition of Tantalum Pentoxide”, Jpn. J. Appl. Phys., 33, (1994) 6291.
23. B. E. Gnade, S. R. Summerfelt and D. Crenshaw, “Processing and Device Issues of High Permittivity Materials for DRAMs”, O. Auciello and R. Waser (eds.), Science and Technology of Electroceramic Thin Films, published by Kluwer Ademic Publisher, (1995) 373.
24. A. J. Moulson and J. M. Herbet, “Electroceramics-Materials、Properties、Applications”, published by Chapman and Hall, (1990).
25. L. L. Hencb and J. K. West, “Principles of Electronic Ceramics”, published by John Wiley and Sons, Inc., (1990).
26. M. W. Barsoum, “Fundamentals of Ceramics”, published by McGraw-Hill, Inc., (1997).
27. W. D. Kingery, H. K. Bowen and D. R. Uhlmann, “Introduction to ceramics”, published by John Wiley Sons, (1991).
28. 吳朗, “電子陶瓷-介電”, 全欣資訊圖書, (1994).
29. M. Ohring, “The Materials Science of Thin Films”, published by Academic Press, Inc., (1992).
30. 李雅明, “固態電子學”, 全華科技圖書, (1995).
31. A. Rose, “Space-Charge-Limited Currents in Solids”, Phys. Rev., 97(6), (1955) 1538.
32. M. A. Lampert, “Simplified Theory of Space-Charge-Limited Currents in an Insulator with Traps”, Phys. Rev., 103(6), (1956) 1648.
33. C. A. Mead, “Electron Transport Mechanisms in Thin Insulating Films”, Phys. Rev., 128(5), (1962) 2088.
34. J. G. Simmons, “Potential Barriers and Emission-Limited Current Flow Between Closely Spaced Parallel Metal Electrodes”, J. Appl. Phys., 35(8), (1964) 2472.
35. K. L. Chopra, “Avalanche-Induced Negative Resistance in Thin Oxide Films”, J. Appl. Phys., 36(1), (1965) 184.
36. S. M. Sze, “Current Transport and Maximum Dielectric Strength of Silicon Nitride Films”, J. Appl. Phys., 38(7), (1967) 2951.
37. J. G. Simmons, “Poole-Frenkel Effect and Schottky Effect in Metal- Insulator-Metal Systems”, Phys. Rev., 155(3), (1967) 657.
38. S. M. Hu, D. R. Kerr and L. V. Gregor, “Evidence of Hole Injection and Trapping in Silicon Nitride Films Prepared by Reactive Sputtering”, Appl. Phys. Lett., 10(3), (1967) 97.
39. J. R. Yeargan, “The Poole-Frenkel Effect with Compensation Present”, J. Appl. Phys., 39(12), (1968) 5600.
40. P. C. Arnett and N. Klein, “Poole-Frenkel Conduction and the Neutral Trap”, J. Appl. Phys., 46(3), (1975) 1399.
41. R. Waser, “Polarization, Conduction and Breakdown in Non- Ferroelectric Perovskite Thin Films”, O. Auciello and R. Waser (eds.), Science and Technology of Electroceramic Thin Films, published by Kluwer Ademic Publishers, (1995) 223.
42. S. B. Desu and I. K. Yoo, “Time-Dependent Dielectric Breakdown in BaTiO3 Thin Films”, J. Electrochem. Soc., 140(9), (1993) L133.
43. R. F. Cava, W. F. Peck and J. J. Krajewski, “Enhancement of the dielectric constant of Ta2O5 through substitution with TiO2 ”, Nature 377 (1995) 125.
44. Towell, and S.B. Desu, “Structure and electrical properties of crystalline (1-x)Ta2O5-xAl2O3 thin films fabricated by Metalorganic solution deposition technique”, Appl. Phys. Lett., 71 (10) (1997) 1341.
45. R. J. Cava, W. F. Peck, Jr. , J. J. Krajewski, G. L. Roberts, B. P. Barber, H. M. O’Bryan, and P. L. Gammel, “Improvement of the dielectruc properties of Ta2O5 through substitution with Al2O3”,Appl. Phys. Lett., 70 (11), (1997) 1396.
46. Chandra S. Desu, Pooran C. Joshi, Seshu1 B. Desu, “Enhanced dielectric properties of modified Ta2O5 thin films”,Mat. Res. Innovat. , 2 (1999) 299.
47. R. J. Cava and J. J. Krajewski, “Dielectric properties of Ta2O5-ZrO2 polycrystalline ceramic”, J. Appl. Phys. 83(3), (1998) 1613.
48. 曾鴻輝, “動態隨機存取記憶體之電容器的製造方法”,電子資訊, 4(1), (1998) 14.
49. J. H. Joo, W. D. Kim, Y. K. Jeong, S. J. Won, S. Y. Park, C. Y. Yoo, S. T. Kim and J. T. Moon, “Rugged Metal Electrode (RME) for High Memory Devices”, Jpn. J. Appl. Phys., 40 (2001) L826.
50. S. Wolf and R. N. Tauber, “Silicon Processing for the VLSI Era”, published by Lattice Press, CA Sunset Beach, (1986) 384.
51. C. Hashimoto, H. Oikawa and N. Honma, “Leakage Current Reduction in Thin Ta2O5 Films for High Density VLSI Memories”, IEEE Trans. on Electron Devices, 36(1), (1989) 14.
52. C. Isobe and M. Saitoh, “Effect of Ozone Annealing on the Dielectric Properties of Tantalum Oxide Thin Films Grown by Chemical Vapor Deposition”, Appl. Phys. Lett., 56(10), (1990) 907.
53. H. Shrinriki and M. Nakata, “UV-O3 and Dry-O2 : Two-Step Annealed Chemical Vapor-Deposited Ta2O5 Films for Storage Dielectric of 64 Mb DRAM’s”, IEEE Trans. on Electron Devices, 38(3), (1991) 455.
54. S. W. Park, Y. K. Baek, J. Y. Lee, C. O. Park and H. B. Im, “Effects of Annealing Conditions on the Properties of Tantalum Oxide Films on Silicon Substrates”, J. Electronic Mat., 21(6), (1992) 635.
55. S. Tanimoto, M. Matsui, K. Kamisako, K. Kuroiwa and Y. Tarui, “Investigation on Leakage Current Reduction of Photo-CVD Tantalum oxide Films Accomplished by Active Oxygen Annealing”, J. Electrochem. Soc., 139(1), 320.
56. S. C. Sun and T. F. Chen, “A Novel Approach for Leakage Reduction of LPCVD Ta2O5 and TiO2 Films by Rapid Thermal N2O Annealing”, IEDM 94, (1994) 333.
57. L. K. Han, G. W. Yoon, D. L. Kwong, V. K. Mathews and P. C. Fazan, “Effects of Post-Deposition Annealing on the Electrical Properties and Reliability of Ultrathin Chemical Vapor Deposited Ta2O5 Films”, IEEE Trans. on Electron Device Lett., 15(8), (1994) 280.
58. S. Kamiyama, H. Suzuki and H. Watanabe, “Ultrathin Tantalum Oxide Capacitor Process Using Oxygen-Plasma Annealing”, J. Electrochem. Soc., 141(5), (1994) 1246.
59. I. Kim, J. S. Kim, O. S. Kwon, S. T. Ahn, J. S. Chun and W. J. Lee, “Effects of Annealing in O2 and N2 on the Electrical Properties of Tantalum Oxide Thin Films Prepared by Electron Cyclotron Resonance Plasma Enhanced Chemical Vapor Deposition”, J. Electronic Mat., 24(10), (1995) 1435.
60. S. C. Sun and T. F. Chen, “A New Post-Deposition Annealing Method Using Furnace N2O for the Reduction of Leakage Current of CVD Ta2O5 Storage Capacitors”, IEDM 96, (1996) 687.
61. S. C. Sun and T. F. Chen, “Leakage Current Reduction in Chemical Vapor Deposited Ta2O5 Films by Rapid Thermal Annealing in N2O”, IEEE Electron Device Lett., 17(7), (1996) 355.
62. S. C. Sun and T. F. Chen, “Reduction of Leakage Current in Chemical Vapor Deposited Ta2O5 Films by Furnace in N2O Annealing”, IEEE Trans. on Electron Devices, 44(6), (1997) 1027.
63. G. B. Alers, R. M. Fleming, Y. H. Wong, B. Dennis, A. Pinczuk, G. Redinbo, R. Urdahl, E. Ong and Z. Hasan, “Nitrogen Plasma Annealing for Low Temperature Ta2O5 Films”, Appl. Phys. Lett., 72(11), (1998) 1308.
64. B. K. Moon, C. Isobe, and J. Aoyama, “Insulating Properties of Tantalum Pentoxide Capacitor Films Obtained by Annealing in Dry Ozone”, J. Appl. Phys., 85(3), (1999) 1731.
65. M. Lin, C. Y. Chang, T. Y. Huang and W. Y. Shieh, “Leakage Current Reduction of Chemical-Vapor-Deposited Ta2O5 Films on Rugged Polycrystalline Silicon Electrode for Dynamic Random Access Memory Application”, Jpn. J. Appl. Phys., 38, (1999) 1927.
66. A. Y. Mao, K. A. Son, J. M. White, D. Kwong, D. A. Roberts and R. N. Vrtis, “Effects of Vacuum and Inert Gas Annealing of Ultrathun Tantalum Pentoxide Films on Si (100)”. J. Vac. Sci. Technol., A 17(3), (1999) 954.
67. K. H. Min, K. C. Chun, and K. B. Kim, “Comparative Study of Tantalum and Tantalum Nitrides (Ta2N and TaN) as a Diffusion Barrier for Cu Metallization”, J. Vac. Sci. Technol. B14(5) (1996) 3263.
68. M. Takeyama, A. Noya, T. Sase, and A. Ohta, “Properties of TaNx Films as Diffusion Barriers in the Thermally Stable Cu/Si Contact Systems”, J. Vac. Sci. Technol. B14(2) (1996) 674.
69. H. Yamagishi and M. Miyauchi, “Thermal Oxidation of Sputtered TaN Films and Properties of the Oxidized Films”, Jpn. J. Appl. Phys. 26(6) (1987) 852.
70. B. E. Deal, and A. S. Grove, “General Relationship for the Thermal Oxidation of Silicon”, J. Appl. Phys. 36 (1965) 3770.
71. S. J. Won, W. D. Kim, C. Y. Yoo, S. T. Kim, Y. W. Park, J. T. Moon and M. Y. Lee, “Conformal CVD-Ruthenium Process for MIM Capacitor in Giga-bit DRAMs”, IEDM Tech. Dig. (2000) p. 789.
72. B. K. Moon, Aoyama and K. Katori, “Ultrathin and Highly Insulating Amorphous-Ta2O5 Films Formed on Ru/TiN/Ti/n+-Si Substrates”, Appl. Phys. Lett., 74(6) (1999) 824.
73. J. Lin, N. Masaaki, A. Tsukune and M. Yamada, “Ta2O5 Thin Films with Exceptionally High Dielectric Constant”, Appl. Phys. Lett., 74 (1999) 2370.
74. T. Aoyama, S. Yamazaki and K. Imai, “Ultrathin Ta2O5 Film Capacitor with Ru Bottom Electrode”, J. Electrochem. Soc., 145(8) (1998) 2961.
75. H. N. Al-Shareef, O. Auciello and A. I. Kingon, “Electrical Properties of Ferroelectric Thin Film Capacitors with Hybrid (Pt, RuO2) Electrodes for Nonvolatile Memory Applications”, J. Appl. Phys., 77 (1995) 2146.
76. D. R. Lide, “CRC Handbook of Chemistry and Physics”, published by CRC Press, Inc. (1997-1998).
77. S. Shibata, “Dielectric Constants of Ta2O5 Thin Films Deposited by r.f. Sputtering”, Thin Solid Films, 277 (1996) 1.
78. K. Kukli, M. Ritala, R. Matero and M. Leskela, “Influence of Atomic Layer Deposition Parameters on the Phase Content of Ta2O5 Films”, J. Cryst. Growth, 212 (2000) 459.
79. E. Kaplan, M. Balog and D. Frohman-Bentchkowsky, “Chemical Vapor Deposition of Tantalum Pentoxide Films for Metal- Insulator- Semiconductor Devices”, J. Electrochem. Soc., 123 (1976) 1570.
80. F. C. Chiu, J. J. Wang, J. Y. M. Lee and S. C. Wu, “Leakage Currents in Amorphous Ta2O5 Thin Films”, J. Appl. Phys., 81 (1997) 6911.
81. JCPDS-ICDD Copyright (1994) 25-922.
82. JCPDS-ICDD Copyright (1994) 18-1304.
83. N. Terao, “Structure des Oxides de Tantale”, Jpn. J. Appl. Phys., 6 (1967) 21.
84. C. L. Tien, C. C. Jaing, C. C. Lee and K. P. Chuang, “Simultaneous Determination of the Thermal Expansion Coefficient and the Elastic Modulus of Ta2O5 Thin Film Using Phase Shifting Interferometry”, J. Mod. Opt., 47(10) (2000) 1681.
85. A. Fukumoto and K. Miwa, “Prediction of Hexagonal Ta2O5 Structure by First-Principles Calculations”, Phys. Rev. B, 55(17) (1997) 155.
86. Y. Abe, M. Kawamura and K. Sasaki, “Preparation of PtO and a-PtO2 Thin Films by Reactive Sputtering and Their Electrical Properties”, Jpn. J. Appl. Phys., 38 (1999) 2092.
87. K. Amanuma, T. Hase and Y. Miyasaka, “Fatigue Characteristics of Sol-Gel Derived Pb(Zr, Ti)O3 Thin Films”, Jpn. J. Appl. Phys., 33 (1994) 5211.
88. B. S. Lee and J. Y. Lee, “Role of PtO Electrode in Pb(Zr,Ti)O3 Films”, Jpn. J. Appl. Phys., 38 (1999) L870.
89. W. S. Kim, J. W. Kim, H. H. Park and H. N. Lee, “Fabrication and Characterization of Pt-Oxide Electrode for Ferroelectric Random Access Memory Application”, Jpn. J. Appl. Phys., 39 (2000) 7097.
90. Y. Tsunemine, T. Okudaira, K. Kashihar, K. Hanafusa, A. Yutani, Y. Fujita, M. Matsushita, H. Itoh and H. Miyoshi, “A Manufacturable Integration Technology of Sputter-BST Capacitor with a Newly Proposed Thick Pt Electrode”, IEDM (1998) p.811.
91. K. L. Saenger, C. Cabral, Jr., C. Lavoie and S. M. Rossnagel, “Thermal Stability and Oxygen-Loss Characteristics of Pt(O) Films Prepared by Reactive Sputtering”, J. Appl. Phys., 86(11) (1999) 6084.
92. K. L. Saenger and S. M. Rossnagel, “Propertied and Decomposition Behaviors of Reactively Sputtered Pt(O) Electrode Materials”, Mat. Res. Soc. Symp. Proc., 596 (2000) 57.
93. J. R. McBride, G. W. Graham, C. R. Peters and W. H. Weber, “Growth and Characterization of Reactively Sputtered Thin-Film Platinum Oxides”, J. App. Phys., 69(3) (1991) 1596.
94. H. Neff, S. Henkel, E. Hartmannsgruber, E. Steinbeiss, W. Michalke, K. Steenbeck and H. G. Schmidt, “Structural, Optical, and Electronic Properties of Magnetron-Sputtered Platinum Oxide Films”, J. App. Phys., 79(10) (1996) 7672.
95. S. M. Sze, “Physics of Semiconductor Devices”, published by Wiley, (New York), (1981).
96. S. Oshini, M. Nagata, S. Mitarai, Y. Ho, Y. Ito, J. Kudo, K. Sakiyama, S. B. Desu, H. D. Bhatt, D. P. Vijay and Y. Hwang, “High Temperature Barrier Electrode Technology for High Density Ferroelectric Memories with Stacked Capacitor Structure”, J. Electrochem. Soc., 145 (1998) 2563.
97. S. Tanimoto, M. Matsui, K. Kamisako, K. Kuroiwa, and Y. Tarui, “Investigation on Leakage Current Reduction of Photo-CVD Tantalum Oxide Films Accomplished by Active Oxygen Annealing”, J. Electrochem. Soc., 139 (1992) 320.
98. T. K. Won, S. G. Yoon and H. G. Kim, “Compositional Analysis and Capacitance-Voltage Properties of TiO2 Films by Low Pressure Metal-Organic Chemical Vapor Deposition”, J. Electrochem. Soc., 139 (1992) 3284.
99. M. Hecq and A. Hecq, “Oxygen Induced Preferred Orientation of dc Sputtered Platinum”, J. Vac. Sci. Technol., 18(2) (1981) 219.
100. M. H. Kim, T. S. Park, D. S. Lee, E. Yoon, D. Y. Park, H. J. Woo, D. I. Chun and J. Ha, “Highly (200)-Oriented Pt Films on SiO2/Si Substrates by Seed Selection Through Amorphization and Controlled Grain Growth”, J. Mater. Res., 14(3) (1999) 634.
101. M. H. Kim, T. S. Park, E. Yoon, D. S. Lee, D. Y. Park, H. J. Woo, D. I. Chun and J. Ha, “Changes in Preferred Orientation of Pt Thin Films Deposited by dc Magnetron Sputtering Using Ar/O2 Gas Mixtures”, J. Mater. Res., 14 (1999) 1255.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊