跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.87) 您好!臺灣時間:2025/01/14 03:55
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:孫郁明
研究生(外文):Yu-Ming Sun
論文名稱:添加鑭系元素(La,Sm)之鈦酸鉍鐵電薄膜應用於非揮發性記憶體之研究
論文名稱(外文):Synthesis and characterization of Lanthanoid(La,Sm)-substituted Bismuth Titanate Thin Films for Non-volatile Memory Applications
指導教授:黃振昌黃振昌引用關係甘炯耀
指導教授(外文):Jenn-Chang HwangJon-Yiew Gan
學位類別:博士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2003
畢業學年度:91
語文別:中文
論文頁數:195
中文關鍵詞:鐵電薄膜鈦酸鉍異向性疲勞性質
外文關鍵詞:ferroelectric thin filmsbismuth titanateanisotropic propertiesfatigue properties
相關次數:
  • 被引用被引用:8
  • 點閱點閱:233
  • 評分評分:
  • 下載下載:25
  • 收藏至我的研究室書目清單書目收藏:1
本文著重於添加鑭的鈦酸鉍(Bi3.25La0.75Ti3O12,BLT)鐵電薄膜在非揮發性鐵電記憶體(NvFRAM)上的應用,利用化學溶液鍍膜法(chemical solution deposition)在Pt/TiOx/SiO2/Si(100)下電極基板上鍍製具(117)、(001)優選指向的BLT薄膜,並探討優選指向對薄膜的微觀結構、漏電流特性、介電特性、鐵電性質的影響。有關薄膜的表面特性則利用X光光電子能譜儀(XPS)來研究,藉由薄膜表面元素的電子軌域束縛能譜來觀察表面的化學成份以及缺陷的分佈。此外,添加其他鑭系元素也會改善鈦酸鉍薄膜的性質,因此本論文製備添加釤的鈦酸鉍鐵電薄膜,其各項性質也一併探討。
以Pt為下電極可在600℃以上鍍出Bi3.25La0.75Ti3O12層狀鈣鈦礦結構多晶薄膜,且利用不同的烘烤及結晶熱處理條件可有效控制BLT薄膜的指向,經過低溫烘烤的BLT傾向於形成(117)方向的晶粒,高溫烘烤則傾向於形成(001)方向的晶粒。由薄膜的結晶繞射圖與表面微結構,顯示BLT的結晶指向對晶粒的特徵有很大的影響,(117)與(001)方向的晶粒形狀有很大的差別,(117)晶粒呈現長板狀,(001)晶粒則為平板狀,兩者皆以層狀的方式堆疊,隨α值下降,薄膜的優選指向由(117)轉變為(001),此時長板狀晶粒所佔有的面積比率下降,而平板狀晶粒的面積比率則上升。BLT薄膜的介電常數隨α值上升而增加,當薄膜為(117)優選指向時其介電常數最大,約為(001)優選指向的1.4倍,而散逸因子tanδ則分布在0.02~0.05的範圍內。在漏電流方面,BLT薄膜的初始電場隨α值增加而下降,達到崩潰前的漏電流密度低於10-6 A/cm2。由於BLT具有異向性,隨著α值由0.024上升到0.92,Pr值由3.3 μC/cm2增加至12 μC/cm2,Ec則由55 kV/cm增至78 kV/cm。疲勞測試的結果,顯示Pt/BLT/Pt電容經過1×1010次的極化反轉之後,可反轉極化值P*-P^並無明顯的衰退,P-E曲線沒有顯得不對稱,代表沒有偏印錯誤(imprint failure),然而隨著試片極化值愈大,疲勞現象則愈明顯。在retention測試方面,所有薄膜在脈波寫入經過104秒之後,retained charge([(+P*)-(+P^)])並無明顯的變化。
薄膜的表面特性上,(117)優選指向BLT薄膜表層的Bi含量較(001)優選指向高,而Bi−O鍵結的化學穩定性較差,容易斷裂而導致Bi3+還原而形成氧空缺聚集。La在(001)與(117)優選指向BLT薄膜表層的含量相當,離子轟擊後, La含量均明顯增加,離子轟擊後La 3d訊號峰的半高寬維持不變,可知(001)優選指向BLT薄膜的La−O鍵結似乎比較穩定,因此可推論La−O鍵結的穩定性與抗疲勞的特性有關。(001)優選指向BLT薄膜表層的Ti含量高於(117)優選指向薄膜,經過離子轟擊後,(001)優選指向BLT薄膜Ti−O鍵結似乎較穩定,訊號峰的半高寬幾乎不變,而(117)優選指向BLT薄膜的Ti−O鍵結似乎會受到不穩定的Bi−O鍵結影響,譜峰的半高寬明顯變寬。
BSmT薄膜的結晶指向在680℃以下,傾向於形成(117)方向的晶粒,溫度介於680℃~700℃則形成混合指向晶粒,750℃則形成(001)方向的晶粒。BSmT薄膜的微結構與BLT類似,(117)晶粒呈現長板狀,(001)晶粒則為平板狀,兩者皆以層狀的方式堆疊。BSmT薄膜的介電常數隨α值上升而增加,當薄膜為(117)優選指向時其介電常數值最大,約為(001)優選指向的2.4倍,而散逸因子tanδ則分佈在0.02~0.04的範圍內。BSmT薄膜的初始電場隨α值增加而下降,(117)優選指向的BSmT薄膜之初始電場為~106 kV/cm,明顯比(001)優選指向薄膜(~127 kV/cm)還來得小。隨著α值由0.006上升到0.85,BSmT薄膜的P-E電滯曲線的形狀逐漸趨於方正、飽和,Pr值由0.524 μC/cm2增加至11.3 μC/cm2,Ec則由84.6 kV/cm增至142 kV/cm。Pt/BSmT/Pt電容的疲勞特性深受薄膜結晶指向影響,(117)優選指向的抗疲勞表現優於混合指向。Pt/BSmT/Pt電容的電荷保持性會受到薄膜結晶指向影響,(117)優選指向BSmT薄膜的電荷保持性較佳,混合指向的薄膜則較差。

摘要…………………………………………………………………….…I
致謝……………………………………………………………………..IV
目錄……………………………………………………………………...V
表目錄………………………………………………………………..... XI
圖目錄………………………………………………………………...XIII
第一章 緒論…………………………………………………………..…1
1-1 簡介………………………………………………………….....1
1-2 鐵電薄膜的發展…………………………………………….…2
1-3 研究動機……………………………………………………….3
1-4 論文架構.....................................................................................5
參考文獻............................................................................................7
第二章 文獻回顧………………………………………………………..9
2-1 鐵電材料………………………………………………...……..9
2-1-1 材料的晶體結構及特性……………………………......9
2-1-2 鐵電材料的特性………………………………………10
2-1-3 鈣鈦礦結構……………………………………………13
2-1-4 鐵電材料的應用……………………………………....14
2-2 Aurivillius化合物的結構與特性……………………………..17
2-3 添加鑭之鈦酸鉍(Bi4-xLaxTi3O12)鐵電薄膜………………......20
2-4 電極...………………………………………………….……...23
2-4-1 金屬電極……………………………………………....23
2-4-2 氧化物電極…………………………………………....24
2-5 鐵電薄膜的製程技術………………………………………...25
2-6 鐵電材料的特性分析...………………………………………29
2-6-1 鐵電性的量測…………………………………………29
2-6-2 鐵電材料的可靠度分析………………….………...…30
2-6-3 介電性質........................................................................33
2-6-4 漏電流機制....................................................................35
參考文獻..........................................................................................57
第三章 實驗方法....................................................................................66
3-1 鐵電電容下電極基板之製備...................................................66
3-1-1 Pt/TiOx/SiO2/Si基板之製備...........................................66
3-2 BLT鐵電薄膜的製備方法........................................................66
3-2-1 BLT化學溶液的配製.....................................................67
3-2-2 旋鍍製程及熱處理程序................................................67
3-3 Pt/BLT/Pt 鐵電電容元件製作..................................................68
3-4 BLT 鐵電薄膜的特性檢測.......................................................69
3-4-1 X光繞射儀(XRD)..........................................................69
3-4-2 場發射掃描式電子顯微鏡(FESEM)............................69
3-4-3 掃描式探針顯微鏡(SPM).............................................69
3-4-4 化學電子能譜儀(ESCA)...............................................69
3-5 Pt/BLT/Pt 鐵電電容的電性量測..............................................70
3-5-1 漏電流特性....................................................................70
3-5-2 介電特性........................................................................70
3-5-3 電滯曲線(P-E curve).....................................................71
3-5-4 疲勞測試(Fatigue).........................................................71
第四章 晶粒的指向對BLT鐵電薄膜性質的影響...............................79
4-1 簡介...........................................................................................79
4-2 實驗方法...................................................................................82
4-2-1 化學溶液的製備............................................................82
4-2-2 薄膜製備........................................................................82
4-2-3 特性量測........................................................................83
4-2-3-1 薄膜的晶體結構與表面微結構......................83
4-2-3-2 Pt/BLT/Pt電容的電性量測..............................83
4-3 結果與討論...............................................................................85
4-3-1 熱處理溫度對薄膜結晶指向的影響............................85
4-3-2 BLT薄膜優選指向的控制.............................................86
4-3-2 BLT薄膜的微觀結構.....................................................88
4-3-3 BLT薄膜的介電特性.....................................................89
4-3-4 BLT薄膜的漏電流.........................................................91
4-3-5 BLT薄膜的鐵電性質.....................................................91
A. P-E電滯曲線.............................................................92
B. 疲勞特性...................................................................93
C. 保持性量測...............................................................95
4-4 結論...........................................................................................96
參考文獻........................................................................................121
第五章 X光光電子能譜儀在Bi3.25La0.75Ti3O12鐵電薄膜的研究......123
5-1 簡介.........................................................................................123
5-2 實驗方法.................................................................................126
5-2-1 溶液的配製與薄膜製備..............................................126
5-2-2 BLT薄膜的特性量測...................................................126
5-3 結果與討論.............................................................................128
5-3-1 薄膜的晶體結構..........................................................128
5-3-2 XPS對BLT薄膜的定性分析......................................128
1. O 1s............................................................................129
2. Bi 4f............................................................................130
3. La 3d...........................................................................132
4. Ti 2p及Bi 4d.............................................................133
5-3-3 XPS對BLT薄膜的定量分析......................................134
5-4 結論.........................................................................................137
參考文獻........................................................................................155
第六章 Bi3.25Sm0.75Ti3O12鐵電薄膜的製備及其特性研究.................158
6-1 簡介.........................................................................................158
6-2 實驗方法.................................................................................159
6-2-1 化學溶液的製備..........................................................159
6-2-2 薄膜製備......................................................................159
6-2-3 特性量測......................................................................160
6-2-3-1 薄膜的晶體結構與表面微結構....................160
6-2-3-2 Pt/BLT/Pt電容的電性量測............................160
6-3 結果與討論.............................................................................162
6-3-1 熱處理溫度對薄膜結晶指向的影響..........................162
6-3-2 BSmT薄膜的微觀結構................................................163
6-3-3 BSmT薄膜的介電特性................................................164
6-3-4 BSmT薄膜的漏電流....................................................165
6-3-5 BSmT薄膜的鐵電性質................................................166
A. P-E電滯曲線...........................................................166
B. 疲勞特性.................................................................168
C. 保持性量測.............................................................169
6-4 結論.........................................................................................170
參考文獻........................................................................................188
第七章 結論..........................................................................................189
表目錄
表1-1 FeRAM和其它記憶體功能與特性比較.......................................6
表2-1 三十二種晶體對稱點群..............................................................41
表2-2 鐵電薄膜在記憶元件上應用之需求..........................................42
表2-3 鐵電薄膜材料特性之比較..........................................................42
表3-1 濺鍍系統的鍍膜條件..................................................................72
表4-1 BiT與BLT的晶體結構與鐵電特性之比較...............................98
表4-2 BLT薄膜的熱處理條件及其對應的繞射強度比率α................98
表5-1 圖5-4所示之(117)優選指向BLT薄膜O 1s能譜的去混參結果
................................................................................................................139
表5-2 圖5-5所示之(001)優選指向BLT薄膜O 1s能譜的去混參結果
................................................................................................................139
表5-3 圖5-6所示之(117)優選指向BLT薄膜Bi 4f能譜的去混參結果
................................................................................................................140
表5-4 圖5-7所示之(001)優選指向BLT薄膜Bi 4f能譜的去混參結果
................................................................................................................140
表5-5 圖5-8所示之(117)優選指向BLT薄膜La 3d能譜的去混參結果
................................................................................................................141
表5-6 圖5-9所示之(001)優選指向BLT薄膜La 3d能譜的去混參結果...............................................................................................141
表5-7 圖5-10所示之(117)優選指向BLT薄膜Ti 2p能譜的去混參結果...............................................................................................142
表5-8 圖5-11所示之(001)優選指向BLT薄膜Ti 2p能譜的去混參結果...............................................................................................142
表5-9 (117)優選指向BLT薄膜的定量分析結果...............................143
表5-10 (001)優選指向BLT薄膜的定量分析結果.............................143
表6-1 BSmT薄膜的熱處理條件及其對應的繞射強度比率α...........172
表7-1 不同結晶指向BLT薄膜的各項性質比較................................194
表7-2 不同結晶指向BSmT薄膜的各項性質比較............................195
圖目錄
圖2-1 晶體的對稱及特性分類圖..........................................................43
圖2-2 壓電性、焦電性、鐵電性的相屬關係圖..................................43
圖2-3 典型鐵電材料之電滯曲線..........................................................44
圖2-4 ABO3鈣鈦礦晶體結構示意圖.....................................................45
圖2-5 不同離子對BaTiO3居禮溫度之關係圖.....................................45
圖2-6 鐵電電容的電滯曲線及其對應的極化狀態..............................46
圖2-7為1T-1C鐵電記憶體單位記憶胞的截面圖...............................47
圖2-8 1T-1C鐵電記憶胞的寫入/讀取操作原理...................................47
圖2-9 SrBi2Ta2O9(SBT)的晶體結構......................................................48
圖2-10 Bi3-xLaxTi3O12(BLT)的晶體結構...............................................49
圖2-11 Sawyer-Tower的等效電路圖......................................................50
圖2-12 (a) 脈衝量測的等效電路圖,(b)測量時之輸入脈衝序列,(c)疲勞測試脈衝序列...................................................................50
圖2-13 以兩個雙極脈衝測試時,△Ps與△Pns之電壓對時間的關係圖(上半部),而其差值(△Ps-△Pns)繪於下半部,τs為反轉時間...............................................................................................51
圖2-14 Fatigue、imprint、retentian對電滯曲線造成的影響.................52
圖2-15 鐵電材料中,電域被電荷釘住的示意圖.................................52
圖2-16 捕獲的電子與氧空缺所造成的空間電荷的示意圖................53
圖2-17 Imprint造成電滯曲線沿電壓軸偏移的示意圖........................53
圖2-18 四種極化機構示意圖................................................................54
圖 2-19頻率變化對極化機構的影響圖................................................54
圖2-20 實際電容器的相位變化圖........................................................55
圖2-21 能障限制傳導機構:(a) 蕭基發射,(b) 穿隧效應...............55
圖2-22 本體限制傳導機制:(a)空間電荷限制傳導,(b)離子傳導,(c)普爾-法蘭克放射.....................................................................56
圖3-1 雙槍射頻磁控濺鍍系統..............................................................73
圖3-2 化學溶液鍍膜法製備BLT鐵電薄膜的流程圖.........................74
圖3-3 旋鍍製程示意圖..........................................................................75
圖3-4 Pt/BLT/PT鐵電電容元件結構及製作流程圖.............................76
圖3-5 Pt/BLT/PT鐵電電容的(a)漏電流(b)介電特性量測示意圖........77
圖3-6 Pt/BLT/PT鐵電電容的(a)電滯曲線(b)疲勞特性量測示意圖....78
圖4-1 RT-66A量測P-E電滯曲線所使用的波形..................................99
圖4-2 疲勞測試期間,RT-66A所使用的訊號週期與波形.................99
圖4-3 RT-66A量測Retention所使用的訊號週期及波形....................100
圖4-4 不同熱處理溫度下,BLT薄膜的XRD圖................................101
圖4-5 BLT薄膜的結晶繞射強度比率對熱處理溫度的關係圖..........101
圖4-6 在不同熱處理條件下,BLT薄膜鍍在Pt/TiOx/SiO2/Si(100)基板上的XRD圖;熱處理條件為(a)低溫(175℃)烘烤,680℃結晶、(b) 低溫(175℃)烘烤,700℃結晶、(c)高溫(400℃)烘烤,680℃結晶、(d)高溫(400℃)烘烤,700℃結晶................................102
圖4-7 BLT薄膜的晶粒成長機制示意圖..............................................103
圖4-8 BLT薄膜的SEM微結構:(a)試片A的截面圖,(b) 試片A的表面結構......................................................................................104
圖4-8 BLT薄膜的SEM微結構:(c)試片B的截面圖,(d) 試片B的表面結構......................................................................................105
圖4-8 BLT薄膜的SEM微結構:(e)試片C的截面圖,(f) 試片C的表面結構......................................................................................106
圖4-8 BLT薄膜的SEM微結構:(g)試片D的截面圖,(h) 試片D的表面結構......................................................................................107
圖4-9不同結晶指向之BLT薄膜(試片A~D)的介電常數及散逸因子(tanδ)對頻率的關係..................................................................108
圖4-10不同結晶指向之BLT薄膜(試片A~D)的漏電流特性圖.........109
圖4-11(a) 試片A在不同電壓下的P-E曲線圖...................................110
圖4-11(b) 試片B在不同電壓下的P-E曲線圖...................................110
圖4-11(c) 試片C在不同電壓下的P-E曲線圖....................................111
圖4-11(d) 試片D在不同電壓下的P-E曲線圖...................................111
圖4-12 不同α值之BLT薄膜的P-E曲線............................................112
圖4-13 不同α值之BLT薄膜的(a)殘存極化值Pr、(b)矯頑電場Ec對電場變化的關係圖.................................................................113
圖4-14 試片A的疲勞特性:(a)反轉(P*)、非反轉(P^)極化值對反轉次數的關係(b)疲勞測試前後的P-E曲線.............................114
圖4-15 試片B的疲勞特性:(a)反轉(P*)、非反轉(P^)極化值對反轉次數的關係(b)疲勞測試前後的P-E曲線.............................115
圖4-16 試片C的疲勞特性:(a)反轉(P*)、非反轉(P^)極化值對反轉次數的關係(b)疲勞測試前後的P-E曲線.............................116
圖4-17 試片D的疲勞特性:(a)反轉(P*)、非反轉(P^)極化值對反轉次數的關係(b)疲勞測試前後的P-E曲線.............................117
圖4-18 不同指向的BLT薄膜之可反轉極化值對反轉次數的關係圖.............................................................................................118
圖4-19 試片A在10 kHz測試頻率的疲勞特性:(a)反轉(P*)、非反轉(P^)極化值對反轉次數的關係(b)疲勞測試前後的P-E曲線.............................................................................................119
圖4-20 不同指向BLT薄膜的極化量對時間的關係圖.....................120
圖5-1 光電子激發過程示意圖............................................................144
圖5-2 各元素在不同軌域的電子束縛能............................................144
圖5-3 BLT薄膜鍍在Pt/TiOx/SiO2/Si(100)基板上的XRD圖;熱處理條件為(a)低溫(175℃)烘烤,680℃結晶、(b)高溫(400℃)烘烤,700℃結晶.................................................................................145
圖5-4 (117)優選指向BLT薄膜的(a)未經離子束清潔、(b)30 s離子束清潔、(c)2 min 離子束清潔、(d) 5 min 離子束清潔的O 1s能譜圖。空心圓代表實驗值;虛線代表去混參的結果;實線代表去混參成分總合。.................................................................146
圖5-5 (001)優選指向BLT薄膜(a)未經離子束清潔、(b)2 min 離子束清潔、(c) 5 min 離子束清潔的O 1s能譜圖。空心圓代表實驗值;虛線代表去混參的結果;實線代表去混參成分總合.......147
圖5-6 (117)優選指向BLT薄膜(a)未經離子束清潔、(b)2 min 離子束清潔、(c) 5 min 離子束清潔的Bi 4f能譜圖。空心圓代表實驗值;虛線代表去混參的結果;實線代表去混參成分總合.......148
圖5-7 (001)優選指向BLT薄膜(a)未經離子束清潔、(b)2 min 離子束清潔、(c) 5 min 離子束清潔的Bi 4f能譜圖。空心圓代表實驗值;虛線代表去混參的結果;實線代表去混參成分總合.......149
圖5-8 (117)優選指向BLT薄膜(a)未經離子束清潔、(b)2 min 離子束清潔、(c) 5 min 離子束清潔的La 3d能譜圖。空心圓代表實驗值;虛線代表去混參的結果;實線代表去混參成分總合...150
圖5-9 (001)優選指向BLT薄膜(a)未經離子束清潔、(b)2 min 離子束清潔、(c) 5 min 離子束清潔的La 3d能譜圖。空心圓代表實驗值;虛線代表去混參的結果;實線代表去混參成分總合...151
圖5-10 (117)優選指向BLT薄膜(a)未經離子束清潔、(b)30 s 離子束清潔、(c) 2 min 離子束清潔、(d) 5 min 離子束清潔的Ti 2p與Bi 4d能譜圖。空心圓代表實驗值;虛線代表去混參的結果;實線代表去混參成分總合.......................................................152
圖5-11 (001)優選指向BLT薄膜(a)未經離子束清潔、(b) 2 min 離子束清潔、(c) 5 min 離子束清潔的Ti 2p與Bi 4d能譜圖。空心圓代表實驗值;虛線代表去混參的結果;實線代表去混參成分總合...........................................................................................153
圖5-13 (001)優選指向BLT薄膜的成份縱深分析圖.........................154
圖6-1 化學溶液鍍膜法製備BSmT鐵電薄膜的流程圖.....................173
圖6-2 不同熱處理溫度,BSmT薄膜鍍在Pt/TiOx/SiO2/Si(100)基板上的XRD圖;熱處理溫度為(a) 650℃、(b) 680℃、(c) 700℃、(d) 750℃....................................................................................174
圖6-3 BSmT薄膜的結晶繞射強度比率對熱處理溫度的關係圖......175
圖6-4 BSmT薄膜的SEM微結構:(a)試片A的表面結構,(b) 試片B的表面結構..................................................................................176
圖6-4 BSmT薄膜的SEM微結構:(c)試片C的表面結構,(d) 試片D的表面結構..................................................................................177
圖6-5不同結晶指向之BSmT薄膜(試片A~D)的介電常數及散逸因子(tanδ)對頻率的關係....................................................................178
圖6-6不同結晶指向之BSmT薄膜(試片A~D)的漏電流特性圖.......179
圖6-7(a) 試片A在不同電壓下的P-E曲線圖....................................180
圖6-7(b) 試片B在不同電壓下的P-E曲線圖....................................180
圖6-7(c) 試片C在不同電壓下的P-E曲線圖....................................181
圖6-7(d) 試片D在不同電壓下的P-E曲線圖....................................181
圖6-8 不同α值BSmT薄膜在391 kV/cm下的P-E曲線....................182
圖6-9 不同α值之BSmT薄膜的(a)殘存極化值Pr、(b)矯頑電場Ec對電場變化的關係圖...................................................................183
圖6-10 試片A的疲勞特性:(a)反轉(P*)、非反轉(P^)極化值對反轉次數的關係(b)疲勞測試前後的P-E曲線.............................184
圖6-11 試片B的疲勞特性:(a)反轉(P*)、非反轉(P^)極化值對反轉次數的關係(b)疲勞測試前後的P-E曲線.............................185
圖6-12 試片C的疲勞特性:(a)反轉(P*)、非反轉(P^)極化值對反轉次數的關係(b)疲勞測試前後的P-E曲線................................186
圖6-13 不同指向BSmT薄膜的極化量對時間的關係圖...................187

Chapter 1
[1] J. F. Scott, C. Paz de Araujo, Science 246, (2000) 100.
[2] R. Ramesh, “Thin Film Ferroelectric Materials and Devices”, Kluwer Academic, London, (1997).
[3] G. J. M. Dormans, P. K. Larsen, G. A. C. M. Spierings, J. Dikken, M. J. E. Ulenaers, R. Cuppens, D. J. Taylor and R. D. J. Verhaar, Integrated Ferroelectrics 6, (1995) 93.
[4] H. Takasu, Integrated Ferroelectrics 14, (1997) 1.
[5] S. Kobayashi, N. Tanabe, Y. Maejima, Y. Hayashi and T. Kunio, Integrated Ferroelectrics 17, (1997) 81.
[6] Betty Prince, “Emerging Memories-Technologies and Trend”, Kluwer Academic Publishers, (2002).
[7] K. Nordquist, S. Pendharkar, M. Durlam, D. Resnick, S. Tehrani, D. Mancini, T. Zhu, and J. Shi, J. Vac. Sci. Technol. B 15, (1997) 2274.
[8] S. H. Holmberg, R. R. Shanks and V. A. Bluhm, J. Electron Mater. 8, (1979) 333.
[9] Kazuya Nakayama, Kazuhiko Kojima, Fumihito Hayakawa, Yutaka Imai, Akio Kitagawa and Masakuni Suzuki, Jpn. J. Appl. Phys. 39, (2000) 6157.
[10] “FRAM Guide Book, Chapter 2”, Fujitsu Web Page .
[11] C. Feldman, View of Science Instrument 26, (1954) 463.
[12] I. H. Pratt and S. Firestone, J. Vac. & Sci. Technol. 8, (1971) 256.
[13] R. Ramesh, J. Lee, T. Sands, V. G. Keramidas, and O. Auciello, Appl. Phys. Lett. 64, 2511 (1995).
[14] H. N. Al-Shareef, K. R. Bellur, A. I. Kingon, and O. Auciello, Appl. Phys. Lett. 66, 239 (1995).
[15] C. A. Paz de Araujo, J. D. Cuchiaro, L. D. McMillan, M. C. Scott, and J. F. Scott, Nature (London) 374, (1995) 627.
[16] B. H. Park, B. S. Kang, S. D. Bu, T. W. Noh, J. Lee, and W. Jo, Nature (London) 401, (1999) 682.
[17] A. Kingon, Nature (London) 401, (1999) 658.
[18] L. B. Kong and J. Ma, Thin solid Films 379 (2000) 89.
[19] P. C. Joshi and S. B. Krupanidhi, J. Appl. Phys. 72, (1992) 5517.
[20] B. H. Park, S. J. Hyun, S. D. Bu, T. W. Noh, J. Lee, H.-D. Kim, T. H. Kim, and W. Jo, Appl. Phys. Lett. 74, (1999) 1907.
[21] B. S. Kang, B. H. Park, S. D. Bu, S. H. Kang, and T. W. Noh, Appl. Phys. Lett. 75, (1999) 2644.
Chapter 2
[1] Y. Xu, “Ferroelectric Materials and Their Applications”, North- Holland, Netherlands, (1991).
[2] J. F. Scott, “Ferroelectric Memories”, Springer, Germany, (2000).
[3] 李雅明, 固態電子學, 全華科技, (1995).
[4] 李雅明, 吳世全, 陳宏名, 鐵電記憶元件, 電子月刊, 14(9), (1996) 68.
[5] 陳銘森, 清華大學, 博士論文, (1996).
[6] 傅勝利, 陶瓷技術手冊-電子陶瓷, 粉末冶金協會, (1994).
[7] B. Jaffe, W. R. Cook, Jr and H. Jaffe, “Piezoelectric Ceramics”, Academic Press Limited, (1971).
[8] “FRAM Guide Book, Chapter 2”, Fujitsu Web Page
[9] P. K. Larsen, R. Cuppens and G. A. C. M. Spierings, Ferroelectric 128, (1992) 265.
[10] R. Ramesh, “Thin Film Ferroelectric Materials and Devices”, Kluwer Academic, Boston, (1997) Chap 8, 199.
[11] R. Ramesh, “Thin Film Ferroelectric Materials and Devices”, Kluwer Academic, Boston, (1997) Chap 9, 221.
[12] S. Aggarwal, A. S. Prakash, T. K. Song, S. Sadashivan, A. M. Dhote, B. Yang, R. Ramesh, Y. Kisler and S. E. Bernacki, Integrated Ferroelectrics 19 (1999) 159.
[13] K. Amanuma, T. Hase and Y. Miyasaska, Appl. Phys. Lett. 66, (1995) 221.
[14] J. K. Lee, T. K. Song, H. J. Jung, Integrated Ferroelectrics 15, (1997) 115.
[15] K. Uchiyama, K. Arita, Y. Shimada, S. Hayashi, E. Fujii, T. Otsuki, N. Solayappan, V. Joshi and C. A. Paz de Araujo, Integrated Ferroelectrics 30, (2000) 103.
[16] B. H. Park, B. S. Kang, S. D. Bu, T. W. Noh, J. Lee, and W. Jo, Nature (London) 401, (1999) 682.
[17] Uong Chon, Gyu-Chul Yi, and Hyun M. Jang, Appl. Phys. Lett. 78, (2001) 658.
[18] Y. Ding, J. S. Liu, H. X. Qin, J. S. Zhu, and Y. N. Wang, Appl. Phys. Lett. 78, (2001) 4175.
[19] B. Yang, Y. M. Kang, S. S. Lee, K. H. Noh, N. K. Kim, S. J. Yeom, N. S. Kang and H. G. Yoon, “Highly Reliable 1 Mbit Ferroelectric Memories with Newly Developed BLT Thin Films and Steady Integration Schemes”, IEDM 2001.
[20] G.A. Somolenskii, V.A. Isupov, and A.I. Agranovskaya, Soviet Phys. Solid State 1, (1959) 149.
[21] G.A. Somolenskii, V.A. Isupov, and A.I. Agranovskaya, Soviet Phys. Solid State 3, (1961) 651.
[22] E.C. Subbarao, J. Chem. Phys. 34, (1961) 695.
[23] E.C. Subbarao, J. Am. Ceram. Soc. 45, (1962) 166.
[24] S. Ikegami, and E. Ueda, Jap. J. Appl. Phys. 13, (1974) 1572.
[25] B. Aurivillius, “Mixed Oxide with layer Lattices”, Ark Kemi, 1, (1949) 463.
[26] E.C. Subbarao, J. Phys. Chem. Solids 23, (1962) 665.
[27] O. Auciello, and R. Ramesh, “Laser-ablation deposition and characterization of ferroelectric capacitors for nonvolatile memories”, MRS Bull. 21, (1996) 31.
[28] C. A. Araujo et al., “Ferroelectric dielectric memory cell can switch at least giga cycles and has low fatigue─has high dielectric constant and low leakage current. US Patent No. 5, 234 (1996) 519.
[29] R. Dat, J. K.Lee, O. Auciello, and A. I. Kingon, Appl. Phys. Lett. 67, (1995) 572.
[30] T. Li et al., Appl. Phys. Lett. 68, (1996) 616.
[31] K. Amanuma, T. Hase, and Y. Miyasak, Appl. Phys. Lett. 66, (1995) 221.
[32] A. D. Rae, J. G. Thompson, R. L. Withers and A. C. Willis, Acta Crystallogr., Sect. B: Struct. Sci. 46, (1990) 474.
[33] S. E. Cummins, and L. E. Cross, Appl. Phys. Lett. 10, (1967) 14.
[34] S. E. Cummins and L. E. Cross, J. Appl. Phys. 39, (1968) 2268.
[35] B. H. Park, S. J. Hyun, S. D. Bu, T. W. Noh, J. Lee, H.-D. Kim, T. H. Kim and W. Jo, Appl. Phys. Lett. 74, (1999) 1907.
[36] Y. Ding, J. S. Liu, H. X. Qin, J. s. Zhu, and Wang, Appl. Phys. Lett. 78, (2001) 4175.
[37] J. K. Lee, C. H. Kim, H. S. Suh, and K. S. Hong, Appl. Phys. Lett. 80, (2002) 3593.
[38] Ming-Wen Chu, Marcel Ganne, Maria Teresa Caldes, and Luc Brohan, J. Appl. Phys. 91, (2002) 3178.
[39] S. D. Bu, B. S. Kang, B. H. Park, and T. W. Noh, J. Korean Phys. Soc. 36, (2000) L9.
[40] H. N. Lee, and Dietrich Hesse, Appl. Phys. Lett. 80, (2002) 1040.
[41] H. N. Lee, Dietrich Hesse, Nikolai Zakharov, and Ulrich Gősele, Science 296, (2002) 2006.
[42] N. Ichinose and M. Nomura, Jpn. J. Appl.Phys. 35, (1996) 4960.
[43] W. S. Yang, N. K. Kim, S. J. Yeom, S. Y. Kweon, E. S. Choi, and J. S. Roh, Jpn. J. Appl.Phys. 40, (1996) 5569.
[44] T. Watanabe, H. Funakubo, Minoru Osada, Y. Noguchi, and M. Miyayama, Appl. Phys. Lett. 80, (2002) 100.
[45] D. Wu, A. Li, T. Zhu, Z. Liu, and N. Ming, J. Appl. Phys. 88, (2000) 5941.
[46] Dinghua Bao, Naoki Wakiya, Kazuo Shinozaki and Nobuyasu Mizutani, J Phys. D:Appl. Phys. 35, (2002) L1.
[47] C. P. D. Araujo, J. F. Scott and G. W. Taylor, Gordon and Breach Publishers, (1996) 193.
[48] T. Maeder, L. Agalowicz, and P. Muralt, Jpn. J. Appl. Phys. 37, (1998) 2007.
[49] E. A. Kneer, D. P.Birnie, R. D. Schrimpf, J. C. Podlesny, and G. Teowee, Integrated Ferroelectrics 7, (1995) 61.
[50] K. Sreenivas, I. Reaney, T. Maeder, and N. Setter, J. Appl. Phys. 75, (1994) 232.
[51] G. Schindler, W. Hartner, V. Joshi, N. Solayappan, G. Derbenwick, and C. Mazure, Integrated Ferroelectrics 17, (1997) 421.
[52] W. Jo, S. M. Cho, H. M. Lee, D. C. Kim, and J. U. Bu, Jpn. J. Appl. Phys. 38, (1999) 2827.
[53] K. S. Hwang, H. A. Park, Byeong Soojung, B. A. Kang, Y. H. Kim, J. Sol-Gel Sci. & Tech. 23, (1998) 67.
[54] Jiwei Zhai and Haydn Chen, Appl. Phys. Lett. 82, (2003) 442.
[55] S. K. Dey and R. Zuleeg, Ferroelectrics 112, (1990) 309.
[56] B. P. Maderic, L. E. Sanchez and S. Y. Wu, Ferroelectrics 116, (1991) 65.
[57] W. L. Warren, D. Dimos, B. A. Tuttle, R. D. Nasby, and G. E. Pike, Appl. Phys. Lett. 65, (1994) 1018.
[58] W. L. Warren, D. Dimos, B. A. Tuttle, G. E. Pike, R. W. Schwartz, P. J. Clews, and D. C. McIntyre, J. Appl. Phys. 77, (1995) 6695.
[59] C. J. Brennan, R. D. Parrella and D. E. Larsen, Ferroelectrics 151, (1994) 33.
[60] S. B. Desu and I. K. Yoo, Integrated Ferroelectrics 3, (1993) 365.
[61] L. K. Yoo, S. B. Desu and J. Xing, MRS Symp. Proc. 310, (1993) 165.
[62] W. Y. Pan, C. F. Yue and B. A. Tuttle, Ceram. Trans. 25, (1992) 385.
[63] W. L. Warren, D. Dimos, G. E. Pike, B. A. Tuttle, , M. V. Raymond, R. Ramesh, and J. T. Evans, Jr., Appl. Phys. Lett. 67, (1995) 866.
[64] S. H. Kim, D. J. Kin, J. G. Hong, S. K. Streiffer and A. I. Kingon, J. Mater. Res. 14, (1999) 1371.
[65] J. F. Scott, C. A. Araujo, B. M. Melnick, L. D. McMillan, and R. Zuleeg, J. Appl. Phys. 70, (1991) 382.
[66] R. C. Brade and G. S. Ansell, J. Am. Ceram. Soc. 52(4), (1969) 192.
[67] G. Arlt, Ferroelectrics 76, (1987) 451.
[68] K. Tsuzuki, Jpn. J. Appl. Phys. 24, (1985) 126.
[69] K. M. Lee, H.G. An, J. K. Lee, Y. T. Lee, Y. T. Lee, S.W. Lee, S. H. Joo, S. D. Nam, K. S. Park, M.S. Lee, S. O. Park, H. K. Kang and J. T. Moon, Jpn. J. Appl. Phys. 40, (2001) 4979.
[70] J. S. Lee and S. K. Joo, Jpn. J. Appl. Phys. 40, (2001) 229.
[71] J. W. Hong, W. Jo, D. C. Kim, S. M. Cho, H. J. Nam, H. M. Lee and J. U. Bu, Appl. Phys. Lett. 75, (1999) 3183.
[72] A. Gruverman, H. Tokumoto, A. S. Prakash, S. Aggarwal, B. Yang, M. Wutting, R. Ramesh, O. Auciello and T. Verkatesan, Appl. Phys. Lett. 71, (1997) 3492.
[73] C. Paz de Araujo, J. F. Scott and G. W. Taylor, “Ferroelectric Thin Films:Synthesis and Basic Properties”, Overseas Publisher Association (1996) 525.
[74] R Ramesh, S. Aggarwal and O. Auciello, Appl. Phys. Lett. 32, (2001) 191.
[75] J. Lee, R Ramesh, V. G. Keramidas, W. L. Warren, G. E. Pike and J. T. Evans, Appl. Phys. Lett. 66, (1995) 1337.
[76] T. Friessnegg, S. Aggarwal, R. Ramesh, B. Nielsen, E. H. Poindexter and D. J. Keeble, Appl. Phys. Lett. 77, (2000) 127.
[77] Eun Gu Lee, Dirk J. Wouters, Geert Willems and Herman E. Maes, Appl. Phys. Lett. 69, (1996) 1223.
[78] N. Inoue and Y. Hayashi, IEEE Trans Electron dev. 48, (2001) 2266.
[79] G. E. Pike, W. L. Warren, D. Dimos, B. A. Tuttle, R. Ramesh, J. Lee, V. G. Keramias and J. T. Evans, Appl. Phys. Lett. 66, (1995) 484.
[80] B. E. Gnade, S. R. Summerfelt and D. Crenshaw, “Processing and Device Issues of High Permittivity Materials for DRAMS”, O. Auciello and R. Waser eds., Science and Technology of Electroceramic Thin Films, Kluwer Academic Publishers, (1995) 373.
[81] A. J. Moulson and J. M. Herbert, “Electroceramics-Materials、Properties、Applications”, Chapman and Hall, (1990).
[82] 吳朗, 電子陶瓷-介電, 全欣資訊圖書, (1994).
[83] M. Ohring, “The Materials Science of Thin Films”,Academic Press, (1992).
Chapter4
[1] J. F. Scott and C. A. Paz de Araujo, Science 246 (1989) 1400.
[2] R. Ramesh, J. Lee, T. Sands, V. G. Keramidas, and O. Auciello, Appl. Phys. Lett. 64, 2511 (1995).
[3] H. N. Al-Shareef, K. R. Bellur, A. I. Kingon, and O. Auciello, Appl. Phys. Lett. 66, 239 (1995).
[4] C. A. Paz de Araujo, J. D. Cuchiaro, L. D. McMillan, M. C. Scott, and J. F. Scott, Nature (London) 374, (1995) 627.
[5] B. H. Park, B. S. Kang, S. D. Bu, T. W. Noh, J. Lee, and W. Jo, Nature (London) 401, (1999) 682.
[6] S. E. Cummins and L. E. Cross, Appl. Phys. Lett. 10, (1967) 14.
[7] S. E. Cummins and L. E. Cross, J. Appl. Phys. 39, (1968) 2268.
[8] Y. Shimakawa, Y. Kubo, Y. Tauchi, H. Asano, T. Kamiyama, F. Izumi and Z. Hiroi, Appl. Phys. Lett. 79, (2001) 2791.
[9] H. N. Lee and D. Hesse, Appl. Phys. Lett. 80, (2002) 1040.
[10] Xiaofeng Du and I-Wei Chen, J. Am. Ceram. Soc., 81, (1998) 3253.
[11] A. Kakimi, S. Okamura, S. Ando and T. Tsukamoto, Jpn. J. Appl. Phys. 34, (1995) 5193.
[12] N. Ichinose and M. Nomura, Jpn. J. Appl. Phys. 35, (1996) 4960.
[13] A. Kingon, Nature (London) 401, (1999) 658.
[14] RT-66A Standardized Ferroelectric Test System Operating Manual.
[15] L. B. Kong and J. Ma, Thin solid Films 379 (2000) 89.
[16] S. K. Kim, M. Miyayama, and H. Yanagida, Mater. Res. Bull. 31, (1996) 121.
Chapter5
[1] B. Aurivillius, Ark. Kemi 1, (1949) 499.
[2] C. Herovches and P. Lightfoot, J. Solid State Chem. 153, (2000) 66.
[3] C. A. Paz de Araujo, J. D. Cuchiaro, L. D. McMillan, M. C. Scott, and J. F. Scott, Nature (London) 374, (1995) 627.
[4] B. H. Park, B. S. Kang, S. D. Bu, T. W. Noh, J. Lee, and W. Jo, Nature (London) 401, (1999) 682.
[5] D. Wu, A. Li, T. Zhu, Z. Liu, and N. Ming, J. Appl. Phys. 88, (2000) 5941.
[6] U. Chon, G. C. Yi, and H. M. Jang, Appl. Phys. Lett. 78, (2001) 658.
[7] D. Dimos, H. N. Al-Shareef, W. L. Warren, and B. A. Tuttle, J. Appl. Phys. 80, (1996) 1682.
[8] P. C. Joshi and S. B. Krupanidhi, J. Appl. Phys. 72, (1992) 5517.
[9] Č. Jovalekić, M. Pavlović, P. Osmokrović, and Lj. Atanasoska, Appl. Phys. Lett. 72, (1998) 1051.
[10] B. H. Park, S. J. Hyun, S. D. Bu, T. W. Noh, J. Lee, H.-D. Kim, T. H. Kim, and W. Jo, Appl. Phys. Lett. 74, (1999) 1907.
[11] B. S. Kang, B. H. Park, S. D. Bu, S. H. Kang, and T. W. Noh, Appl. Phys. Lett. 75, (1999) 2644.
[12] D. A. Shirley, Ohys. Rev. B5 (1972) 4709.
[13] M. Qvarford, S. Sőderholm, G. Chiaia, R. Nyholm, J. N. Andersen, I. Lindau, U. O. Karlsson, L. Leonyuk, A. Nilsson, and Mårtensson, Phys. Rev. B 53, (1996) R14753.
[14] A. Balzarotti, M. De Crescenzi, N. Motta, F. Patella, A. Sgarlata, P. Paroli, G. Balestrino, and M. Marinelli, Phy. Rev. B 43, (1991) 11500.
[15] C. R. Brundle, E. Silverman, and R. J. Madix, J. Vac. Sci. Technol. 16, (1979) 474.
[16] V. S. Dharmadhikari, S. R. Sainkar, S. Badrinarayan, and A. Goswami, J. Electron Spectrosc. Relat. Phenom. 25, (1982) 181.
[17] C. Hinnen, C. N. van Huong, and P. Marcus, J. Electron Spectrosc. Relat. Phenom. 73, (1995) 293.
[18] J. Choisnet, N. Abadzhieva, P. Stefanov, D. Klissurski, J. M. Bassat, V. Rives, and L. Minchev, J. Chem. Soc., Faraday Trans. 90, (1994) 1987.
[19] C. D. Wagner, W. M. Riggs, L. E. Davis, J. F. Moulder, and G. E. Muilenberg, Handbook of XPS (Perkin-Elmer, Minneapolis, 1979).
[20] W. E. Morgan, W. J. Stec, and J. R. van Wazer, Inorg. Chem. 12, (1973) 953.
[22] G. K. Wertheim, R. L. Cohen, A. Rosencwaig and H. J. Guggenheim in “Electron Spectroscopy”, ed. D. A. Shirley, North Holland, Amsterdam, (1972).
[22] Ming-Wen Chu, Marcel Ganne, Maria Teresa Caldes, and Luc Brohan, J. Appl. Phys. 91, (2002) 3178.
Chapter6
[1] S. E. Cummins and L. E. Cross, Appl. Phys. Lett. 10, (1967) 14.
[2] S. E. Cummins and L. E. Cross, J. Appl. Phys. 39, (1968) 2268.
[3] D. Wu, A. Li, T. Zhu, Z. Li, Z. Liu and N. Ming, J. Mater. Res. 16, (2001) 1325.
[4] J. Celinska, V. Joshi, S. Narayan, L. D. Macmillan and C. A Paz De Araujo, Integr. Ferroelectr. 30, (2001) 1.
[5] T. Watanabe, A. Saiki, K. Saito and H. Funakubo, J. Appl. Phys. 89, (2001) 3934.
[6] B. H. Park, B. S. Kang, S. D. Bu, T. W. Noh, J. Lee, and W. Jo, Nature (London) 401, (1999) 682.
[7] Uong Chon, Ki-Bum Kim, Hyun M. Jang, and Gyu-Chul Yi, Appl. Phys. Lett. 79, (2001) 3137.
[8] H. Uchida, H. Yoshikawa, I. Okada, H. Matsuda, T. Iijima, T. Watanabe and H. Funakubo, Jpn. J. Appl. Phys. 41, (2002) 6820.
[9] RT-66A Standardized Ferroelectric Test System Operating Manual.
[10] S. K. Kim, M. Miyayama, and H. Yanagida, Mater. Res. Bull. 31, (1996) 121.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top