跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.170) 您好!臺灣時間:2024/12/03 14:29
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:潘易民
論文名稱:以電子迴旋共振化學氣相沉積系統合成低介電掺氮氟化非晶質碳膜及其鑑定研究
論文名稱(外文):characterization and synthesis of low-dielectric nitrogen doped fluorinated amophous carbon films by electron cyclotron resonance chemical deposition system
指導教授:施漢章
學位類別:碩士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2003
畢業學年度:91
語文別:中文
中文關鍵詞:介電
相關次數:
  • 被引用被引用:0
  • 點閱點閱:181
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在本實驗中,我們以CF4、C2H2和N2氣體為前驅物並使用電子迴旋共振化學氣相沉積法製備低介電掺氮氟化非晶質碳膜(a-C:F:N)。首先,為了增進傳統氟化非晶質碳膜的熱穩定性,我們選擇加入氮原子幫助交聯。發現隨著N2氣體流量比由0%增加至60%時,雖然薄膜的氟原子含量會由55.3%下降至41.5%且導致介電常數從1.7上升到3.0,然而卻因為交聯度的提升,使得在經過300℃退火30分鐘後,薄膜厚度衰減率由26.6%下降至3.9%。
接著我們也探討了沉積溫度對a-C:F:N薄膜性質的影響。隨著沉積溫度的升高,鍍膜速率會變小,另外,薄膜中CFx鍵結比例也會隨著溫度的上升而下降以致氟含量減少造成介電常數值增加。然而,a-C:F:N薄膜的熱穩定性卻也因為沉積溫度的上升而增強。例如,在400℃下所沉積的a-C:F:N薄膜,其氟含量在300℃退火過後只有1.5%的下降,而介電常數值也只從原本的3.2上升至3.32。

目 錄
摘要…………………………………………………………………………………..Ⅰ
Abstract………………………………………………………………………………Ⅱ
誌謝…………………………………………………………………………………..Ⅳ
目錄………………………………………………………………………………..…Ⅴ
圖目錄………………………………………………………………………………..Ⅶ
表目錄………………………………………………………………………………..Ⅸ
一、 前言……………………………………………………………………………....1
二、 文獻回顧………………………………………………………………………....5
2.1 CVD簡介…………………………………………………………………………5
2.1.1 CVD之輸送現象…………………………………………………………….6
2.1.2常見的化學氣相沉積法…………………………………………………….11
2.2 RC delay………………………………………………………………………….14
2.3 介電性質………………………………………………………………………...18
2.3.1 極化現象……………………………………………………………………18
2.3.2 介電常數……………………………………………………………………23
2.4 低介電材料……………………………………………………………………...25
2.4.1 低介電材料應具備之條件…………………………………………………25
2.4.2 近年發展之低介電材料……………………………………………………27
三、 實驗方法………………………………………………………………………..36
3.1 試片製備………………………………………………………………………...36
3.2 電子迴旋共振化學氣相沉積系統……………………………………………...39
3.3 薄膜性質分析…………………………………………………………………...41
3.3.1 傅立葉轉換紅外線光譜儀(FTIR)………………………………………….41
3.3.2 場發射掃描式電子顯微鏡(FE-SEM)……………………………………...41
3.3.3 原子力顯微鏡(AFM)……………………………………………………….43
3.3.4 化學分析電子儀分析………………………………………………………44
四、 結果與討論……………………………………………………………………..46
4.1 掺氮氟化非晶質碳膜的基本性質……………………………………………...46
4.2 氮含量對掺氮氟化非晶質碳膜的影響………………………………………...55
4.2.1 鍍膜速率……………………………………………………………………55
4.2.2 化學組成……………………………………………………………………58
4.2.3 表面型態……………………………………………………………………66
4.2.4 介電常數……………………………………………………………………66
4.2.5 熱穩定性……………………………………………………………………71
4.3 基板溫度對掺氮氟化非晶質碳膜的影響……………………………………...76
4.3.1 鍍膜速率……………………………………………………………………76
4.3.2 化學組成……………………………………………………………………78
4.3.3 表面型態……………………………………………………………………81
4.3.4 介電常數……………………………………………………………………81
4.3.5 熱穩定性……………………………………………………………………86
五、 結論……………………………………………………………………………..90
六、 未來研究方向…………………………………………………………………..92
七、 參考文獻………………………………………………………………………..93
圖 目 錄
圖1.1 訊號傳輸之遲滯與製程技術發展的關係圖…………………………………3
圖2.1 化學氣相沉積過程表示圖……………………………………………………8
圖2.2 兩種常見的流體流動方式(a)層流(b)擾流……………………………9
圖2.3 在晶片表面之邊界層示意圖…………………………………………………9
圖2.4 絕緣層與金屬內連線之橫截面圖…………………………………………..16
圖2.5 閘極延遲與使用不同材料所造成之RC delay對各個製程世代的變化….17
圖2.6 四種極化機制(a)電子極化(b)離子極化(c)偶極矩極化(d)界面極化……………………………………………………………………………..20
圖2.7 對極化率有貢獻之各部份與頻率的關係…………………………………..22
圖2.8 掺氟二氧化矽在低氟含量及高氟含量時之可能結構……………………..30
圖3.1 本實驗所用之Metal-Insulator-Metal(MIM)結構……………………….37
圖3.2 實驗流程圖…………………………………………………………………..38
圖3.3 電子迴旋共振化學氣相沉積系統構造圖…………………………………..40
圖3.4 一帶電粒子經由磁場的作用沿著螺旋狀路徑運動………………………..40
圖3.5 SEM構造表示圖……………………………………………………………..42
圖3.6 ESCA中X光光源游離激發光電子示意圖………………………………...45
圖4.1 沉積條件為CF4/C2H2/N2 = 63/3/8之FTIR光譜 (a)退火前 (b)退火後….50
圖4.2 沉積條件為CF4/C2H2/N2 = 63/3/8之ESCA全能譜 (a)退火前 (b)退火後51
圖4.3 沉積條件為CF4/C2H2/N2 = 63/3/8之ESCA C(1s) core-level能譜圖 (a)退火前(b)退火後……………………………………………………………….…52
圖4.4 沉積條件為CF4/C2H2/N2 = 63/3/8之AFM照片 (a)退火前(b)退火後……53
圖4.5 R = 10 %之橫截面SEM照片………………………………………………..56
圖4.6 鍍膜速率在不同N2氣體流量比時的變化………………………………….57
圖4.7 不同N2氣體流量比時的ESCA全能譜…………………………………….61
圖4.8 不同N2氣體流量比時之ESCA C(1s)core-level 能譜圖…………………..62
圖4.9 具有交聯結構的polyethylene分子…………………………………………63
圖4.10 (a)加入氮原子增加可提供交聯的鍵結 (b)具有網狀高交聯結構的a-C:F:N
………………………………………………………………………………64
圖4.11薄膜中各元素的含量百分比濃度在不同N2氣體流量比R時的變化情形.65
圖4.12 不同N2流量比所沉積薄膜的AFM照片(a)R=0% (b)R=30% (c)R=60%...67
圖4.13 介電常數在不同N2流量比時的變化……………………………………...70
圖4.14 不同實驗條件沉積薄膜經過30分鐘、300℃退火過後的薄膜衰減率變化
………………………………………………………………………………73
圖4.15 不同實驗條件沉積薄膜退火前後的介電常數變化………………………74
圖4.16 不同實驗條件沉積薄膜退火前後的F原子含量百分比變化……………75
圖4.17 不同基板溫度下的薄膜沉積速率…………………………………………77
圖4.18 不同基板溫度沉積薄膜的化學組成變化…………………………………79
圖4.19 不同基板溫度沉積薄膜的ESCA C(1s) core-level能譜圖……………….80
圖4.20 不同基板溫度沉積薄膜表面的AFM照片 (a)R.T. (b)200℃(c)300℃…..82
圖4.21 不同基板溫度沉積薄膜的介電常數變化…………………………………85
圖4.22 不同基板溫度沉積薄膜經過30分鐘、300℃退火過後的薄膜衰減率變化
………………………………………………………………………………87
圖4.23 不同基板溫度沉積薄膜退火前後的F原子含量百分比變化……………88
圖4.24 不同基板溫度沉積薄膜退火前後的介電常數變化………………………89
表 目 錄
表1.1 SIA於1994年所製作的半導體製程IMD進程表………………………...4
表2.1 三種化學氣相沉積方式之比較……………………………………………..13
表2.2 選擇低介電材料之要求……………………………………………………..26
表2.3 常見介電材料之性質………………………………………………………..28
表2.4 一些低介電有機聚合物之性質……………………………………………..29
表4.1 沉積條件為CF4/C2H2/N2 = 63/3/8之薄膜各項性質……………………….54
表4.2 不同實驗條件的氣體流量…………………………………………………..60
表4.3 在不同N2氣體流量比之各項薄膜性質…………………………………….60
表4.4 30分鐘、300℃退火過後不同實驗條件沉積薄膜的各項性質…………..72
表4.5 不同基板溫度所沉積a-C:F:N薄膜之性質…………………………………77
表4.6 30分鐘、300℃退火過後不同基板溫度沉積薄膜的各項性質…………..87

七、參考文獻
1. R.H. Dennard, F.H. Gaensslen, H.N. Yu, V.L. Rideout, E.Bassous, A.R. LeBlanc, IEEE J. Solid-State Circuits SC-9(1974)256.
2. M.T. Bohr, IEDM Tech. Dig. Washington DC(1995)241.
3. Ruichen Liu, Chien-Shing Pai, and Emilio Martinez, “Interconnect technology trend for microelectronics”, Solid-State Electronics 43(1999)1003-1009.
4. Hara Hisashi, “Some issues yet to be solved for the age of 0.1μm technologies”, Appl. Surf. Sci. 64(1997)117-118.
5. Semiconductor Industry Association, The National Technology Roadmap for Semiconductors, 1994.
6. 陳力俊, 微電子材料與製程, 中國材料科學學會, p.p. 345-347, 2000.
7. 莊達人, VLSI製造技術, 高立圖書有限公司, p.p. 184-198, 2000.
8. C. Y. Chang and S. M. Sze, ULSI Technology, p.p. 206, 1996.
9. W. Ken and G. L. Schrable, IEEE Trans. Electron Device ED-26, p.p. 647, 1979.
10. Z. Q. Ma, Y. Kido, “The atomic displacements on surface generated by low-energy projectile”, Thin Solid Films 359(2000)288-292.
11. J. A. Thornton, “Plasma-Assisted Deposition Process-Theory, Mechanism and Application”, Thin Solid Films 107(1983)3.
12. A. Sherman, “Plasma-Assisted Chemical Vapor Deposition Process and Their Semiconductor Applications”, Thin Solid Films 113(1984)135.
13. L. Flamm and V. M. Donnely, Plasma Chem. Plasma Proc. 1(1981)317.
14. D. W. Hess, “Plasma-Surface Interactions in Plasma-Enhanced Chemical Vapor Deposition”, Ann. Rev. Sci. 16(1986)163.
15. Brian Chapman, “Glow Discharge Process”, John Wiley and Sons, 1980.
16. E. Nasser, “Fundamentals of Gaseous Ionization and Plasma Electronics”, Wiely Interscience, 1971.
17. S. P. Muraka, Solid State Technol. 39(1996)83.
18. L. Peters, “Pursuing the perfect low-k dielectric”, Semiconductor International 21(1998)64.
19. 蔡志偉, “低介電常數材料(SiCF)在積體電路上之應用研究”, 國立清華大學碩士論文(2001).
20. Y. Ushiki, H. Kushibe, H. Ono, and A. Nishiyama, VMIC Conference (1990)413.
21. 廖信一, “銅晶片構裝的挑戰-Cu & Low-K Dielectric”, 工業材料, 147期(1999)89-92.
22. T. Ida, M. Rossnegal, and D. Mika Isen, “Collimated magnetron sputter deposition”, J. Vac. Sci. Tech. A 9(1991)261-265.
23. T. Sakurai, “Closed-form expressions for interconnection delay, coupling, and crosstalk in VLSIs”, IEEE Trans. Electron Device 40(1993)118-124.
24. Ion Bunget and Mihai Popescu, “Physics of Solid Dielectrics”, Elsevier, Amsterdam, p.p. 208, 1984.
25. James P. Schaffer, Ashok Saxena, Stephen D. Antolovich, Thomas H. Sanders, Jr. and Steven B. Warner, “The Science and Design of Engineering Materials”, 2nd ed., McGraw-Hill Companies, Inc., p.p. 481-491, 1999.
26. Charles Kittel, “Introduction to Solid State Physics”, 7th ed., John Wiley & Sons, Inc., New York, p.p. 391, 1996.
27. B. Roberts, A. Harrus, and R. L. Jackson, Solid State Technology 69(1995).
28. H. Treichel, G. Ruhl, P. Ansmann, R. Würl, Ch. Müller, M. Dietlmeier, “Low dielectric constant materials for interlayer dielectric(Invited paper)”, Microelectronic Engineering 40(1998)1-19.
29. J. O. Simpson, and A. K. St. Clair, “Fundamental insight on developing low dielectric constant polyimides”, Thin Solid Films 308-309(1997)480-485.
30. Kazuhiko Endo and Toru Tatsumi, “Amorphous carbon thin films containing benzene rings for use as low-dielectric-constant interlayer dielectrics”, Appl. Phys. Lett. 70(1997)2616-2618.
31. M. Uhlig, A. Bertz, M. Rennau, S. E. Schulz, T. Werner, T. Gessner, “Electrical and adhesion properties of plasma-polymerised ultra-low k dielectric films with high thermal stability”, Microelectronic Engineering 50(2000)7-14.
32. Hongning Yang, Douglas J. Tweet, Yanjun Ma, and Tue Nguyen, “Deposition of highly crosslinked fluorinated amorphous carbon films and structural evolution during thermal annealing”, Appl. Phys. Lett. 73(1998)1514-1516.
33. Y. Matsubara, K. Kishimoto, K. Endo, M. Iguchi, T. Tatsumi, H. Gomi and T. Horiuchi, “RC delay reduction of 0.18μm CMOS technology using low dielectric constant fluorinated amorphous carbon”, IEEE, IEDM 98(1998)841-844.
34. Chang-Su Huh and Jae-Bok Lee, “A study on the breakdown characteristics of the fluorocarbon”, Conference Record of the 1996 IEEE International Symposium on Electrical Insulation, Montreal, Quebec, Canada, June 16-19, 1996.
35. Haruo Yokomichi and Kazuo Morigaki, “Temperature dependence of electron spin resonance in fluorinated amorphous carbon films”, J. Non-Cryst. Solids 266-269(2000)797-802.
36. C. E. Bouldin, W. E. Wallace, G. W. Lynn, S. C. Roth, and W. L. Wu, “Thermal expansion coefficient of low-k dielectric films from Fourier analysis of x-ray reflectivity”, J. Appl. Phys. 88(2000)691-695.
37. Haruo Yokomichi and Atsushi Masuda, “Effect of sputtering with hydrogen dilution on fluorine concentration of low hydrogen content fluorinated amorphous carbon thin films with low dielectric constant”, J. Appl. Phys. 86(1999)2468-2472.
38. Kazuhiko Endo, Keisuke Shinoda, and Toru Tatsumi, “Plasma deposition of low-dielectric-constant fluorinated amorphous carbon”, J. Appl. Phys. 86(1999)2739-2745.
39. Shih-Wei Lee, Hyungkun Kim, Frank G. Shi, and Bin Zhao, “Thickness dependent soft-breakdown phenomena of low dielectric constant thin films and corresponding activation energy”, Microelectronics Journal 33(2002)605-608.
40. A. Grill, “Amorphous carbon based materials as the interconnect dielectric in ULSI chips”, Diamond Relat. Mater. 10(2001)234-239.
41. Jia-Min Shieh, Shich-Chang Suen, Kou-Chiang Tsai, and Bau-Tong Dai, “Characteristics of fluorinated amorphous carbon films and implementation of 0.15μm Cu/a-C:F damescence interconnection”, J. Vac. Sci. Technol. B 19(2001)780-787.
42. C. Ronning, M. Büttner, U. Vetter, H. Feldermann, O. Wondratschek, W. Brunner, Frederick C. K. Au, Quan Li, and S. T. Lee, “Ion beam deposition of fluorinated amorphous carbon”, J. Appl. Phys. 90(2001)4237-4245.
43. H. Zhou, H. K. Kim, F. G. Shi, B. Zhao,and J. Yota, “Thickness dependent glass transition temperature of PECVD low-k dielectric thin films:effect of deposition methods”, Microelectronics Journal 33(2002)221-227.
44. P. Justison, E. Ogawa, P. S. Ho, M. Gall, C. Capasso, D. Jawarani, J. Wetzel, and H. Kawasaki, “Electromigration in multilevel interconnects with polymeric low-k interlevel dielectrics”, Appl. Phys. Lett. 79(2001)4414-4416.
45. J. A. Lubguban, J. Sun, T. Rajagopalan, B. Lahlouh, S. L. Simon, and S. Gangopadhyay, “Supercritical carbon dioxide extraction to produce low-k plasma enhanced chemical vapor deposited dielectric films”, Appl. Phys. Lett. 81(2002)4407-4409.
46. N. Biswas, X. Wang, and S. Gangopadhyay, “Electrical properties of amorphous silicon carbide films”, Appl. Phys. Lett. 80(2002)3439-3441.
47. Yanjun Ma, Hongning Yang, J. Guo, C. Sathe, A. Agui, and J. Nordgren, “Structural and electronic properties of low dielectric constant fluorinated amorphous carbon films”, Appl. Phys. Lett. 72(1998)3353-3355.
48. A. Grill, V. Patel, K. L. Saenger, C. Jahnes, S. A. Cohen, A. G. Schrott, D. C. Edelstein, and J. R. Paraszczak, “Diamondlike carbon materials as low-k dielectrics for multilevel interconnects in ULSI”, Mat. Res. Soc. Symp. Proc. Vol. 443(1997)155-164.
49. H. K. Kim, F. G. Shi, B. Zhao, and M. Brongo, “Low-k Dielectrics for ULSI Multilevel Interconnections:Thickness-Dependent Electrical and Dielectric Properties”, Conference Record of the 2000 IEEE International Symposium on Electrical Insulation, Anaheim, CA USA, April 2-5, 2000.
50. X. W. Liu, J. H. Lin, W. J. Jong, and H. C. Shih, “The effect of pressure control on a thermally stable a-C:N thin films with low dielectric constant by electron cyclotron resonance-plasma”, Thin Solid Films 409(2002)178-184.
51. “Dielectrics for ULSI Multilevel Interconnection Conference”1997.
52. Tetsuo Matsuda, M. J. Shapiro DUMIC Conference, 1995, p. 22.
53. Takashi Fukada, Takashi Akahori, International Conference on Solid State Devuces and Materials, 1993, p. 158.
54. Seoghyeong Lee and Jong-Wan Park, “Effect of fluorine on moisture absorption and dielectric properties of SiOF films”, Mater. Chem. Phys. 53(1998)150-154.
55. 張鼎張, 劉柏村, “NDL在無機類低介電常數材質的研發簡介”, 奈米通訊, 第五卷第四期.
56. R. M. Geffken, IEDM Technical Digest, 542(1983).
57. Ikeda et al., J. Electronic Mat. 19(1)(1990)105.
58. L. J. Buckley et al., Mat. Res. Soc. Proc. 381(1995)111.
59. S. Mumby, J. Electr. Mat. 18(2)(1989)241.
60. Herminghaus, S. Boese, D. Yoon and D.Y. Smith, “Large anisotropy in optical properties of thin polyimide films of poly (p-phenylene biphenyltetracarboximide”, Appl. Phys. Lett. 59(1991)1043.
61. C. Jin, S. List, W. W. Lee, C. Lee, J. D. Luttmer, R. Havemann, D. Smith, T. Ramos, A. Masksra, Abstr. Adv. Met. Interconn. Systems ULSI Appl., Boston, 1996.
62. J. Fricke, Phys. BI. 51(1995)935.
63. Kazuhiko Endo and Toru Tatsumi, “Fiuorinated amorphous carbon thin films grown by plasma enhanced chemical vapor deposition for low dielectric constant interlayer dielectrics”, J. Appl. Phys. 78(1995)1370-1372.
64. S. F. Durrant, R. P. Mota, and M. A. Bica de Moraes, J. Appl. Phys. 71(1992)448.
65. Kazuhiko Endo and Toru Tatsumi, “Fluorinated amorphous carbon thin films grown by helicon plasma enhanced chemical vapor deposition for low dielectric constant interlayer dielectrics”, Appl. Phys. Lett. 68(1996)2864-2866.
66. X. W. Liu, K. P. Huang, J. H. Lin, L. T. Chao, P. Lin, and H. C. Shih, “Deposition of Thermal Stable Amorphous Carbon Nitride Thin Films with Low Dielectric Constant by ECR-CVD”, American Vacuum Society 47th International Symposium, Boston USA, October 2-6(2000).
67. Jeremy A. Theil, “Fluorinated amorphous carbon films for low permittivity interlevel dielectrics(Review article)”, J. Vac. Sci. Technol. B 17(1999)2397-2419.
68. Haruo Yokomichi, Tohru Hayashi, and Atsushi Masuda, “Changes in structure and nature of defects by annealing of fluorinated amorphous carbon thin films with low dielectric constant”, Appl. Phys. Lett. 72(1998)2704-2706.
69. X. Wang, H. R. Harris, K. Bouldin, H. Temkin, S. Gangopadhyay, M. D. Strathman, and M. West, “Structure properties of fluorinated amorphous carbon films”, J. Appl. Phys. 87(2000)621-623.
70. Thomas W. Mountsier and John A. Samuels, “Precursor selection for plasma deposited fluorinated amorphous carbon films”, Thin Solid Films 332(1998)362-368.
71. Da Zhang and Mark J. Kushner, “Mechanisms for CF2 radical generation and loss on surfaces in fluorocarbon plasmas”, J. Vac. Sci. Technol. A 18(2000)2661-2668.
72. M. E. H. Maia da Costa, F. L. Freire Jr., L. G. Jacobsohn, D. Franceschini, G. Mariotto, and I. R. J. Baumvol, “Fluorine incorporation into amorphous hydrogenated carbon films deposited by plasma-enhanced chemical vapor deposition:structural modifications investigated by X-ray photoelectron spectrometry and Raman spectroscopy”, Diamond Relat. Mater. 10(2001)910-914.
73. L. Valentini, E. Braca, J. M. Kenny, G. Fedosenko, J. Engemann, L. Lozzi, and S. Santucci, “Analysis of the role of fluorine content on the thermal stability of a-C:H:F thin films”, Diamond Relat. Mater. 11(2002)1100-1105.
74. Po-tsum Liu, T. C. Chang, K. C. Hsu, T. Y. Tseng, L. M. Chen, C. J. Wang, and S. M. Sze, “Characterization of porous silicate for ultra-low k dielectric application”, Thin Solid Films 414(2002)1-6.
75. A. Courtot-Descharles, F. Pires, P. Paillet, and J. L. Leray, “Density functional theory applied to the calculation of dielectric constant of low-k materials”, Microelectronics Reliability 39(1999)279-284.
76. 汪建民主編, 材料分析, 中國材料科學學會, 2001年再版, p.p. 121-381.
77. 廖學良, “原子力顯微鏡的原理與應用”, 技術專欄, p.p. 38-51.
78. 曾文聖, 林良平, “原子力顯微鏡的原理及其在生物學上之應用”, 科儀新知第19卷第六期(1998.6)4-15.
79. Kazuhiko Endo and Toru Tatsumi, “Nitrogen doped fluorinated amorphous carbon thin films grown by plasma enhanced chemical vapor deposition for low dielectric constant interlayer dielectrics”, Appl. Phys. Lett. 68(1996)3656-3658.
80. 孫旭昌, 謝嘉民, 蔡明蒔, 劉志宏, 戴寶通, “氟化非晶相碳膜製程參數及熱穩定性之研究(一)”, 奈米通訊, 第七卷第二期.
81. Haruo Yokomichi and Atsushi Masuda, “Effects of nitrogen incorporation on structural properties of fluorinated amorphous carbon films”, J. Non-Cryst. Solids 271(2000)147-151.
82. F. L. Freire Jr., “Amorphous hydrogenated carbon films:effects of nitrogen and fluorine incorporation on the film microstructure and mechanical properties:a review”, J. Non-Cryst. Solids 304(2002)251-258.
83. Yasuda, H. “Plasma Polymerization”, Academic Press, New York, 1985.
84. Sung-Hoon Yang, Jeongwon Park, Jung-Yeul Kim, You-Kee Lee, Bum-Rae Cho, Dong-Koo Park, Won-Hee Lee, and Jong-Wan Park, “Effects of Deposition Temperature on Low-Dielectric Fluorinated Amorphous Carbon Films for Ultralarge-Scale Integration Multilevel Interconnects”, Microchemical Journal 63(1999)161-167.
85. Kow Ming Chang, Shih Wei Wang, Chii Horng Li, Ta Hsun Yeh, and Ji Yi Yang, “Effect of adding Ar on the thermal stability of chemical vapor deposited fluorinated silicon oxide using an indirect fluorinating precursor”, Appl. Phys. Lett. 70(1997)2556-2558.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top