(34.204.201.220) 您好!臺灣時間:2021/04/20 12:13
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:蕭達慶
論文名稱:摻雜元素對於奈米碳管之效應及相關奈米結構
論文名稱(外文):Effects of extrinsic elements on carbon nanotubes and related nanostructures
指導教授:施漢章
學位類別:碩士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2003
畢業學年度:91
語文別:英文
論文頁數:110
中文關鍵詞:奈米碳管
外文關鍵詞:Carbon Nanotubes
相關次數:
  • 被引用被引用:0
  • 點閱點閱:175
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
由於特殊的結構以及良好的電性、機械性質、化學穩定性,奈米碳管已經在許多領域引起廣泛的興趣。其中在電性質方面,因為不同的螺旋性、結晶性及半徑,奈米碳管可能呈現半導性或金屬性,在製作元件的考量上,我們必須能夠精確控制其性質,但是要由螺旋性及半徑來控制他的性質是非常困難的,相關報導指出,藉由摻雜元素可對碳管進行改質,進而控制它成為半導性或金屬性。基於這個考量,本實驗就在於以能夠控制碳管的性質為出發點,對其摻雜不同元素,並觀察及量測其性質的變化。
本實驗以微波電漿化學氣相沉積系統(MPECVD)成長奈米碳管,首先在基板上鍍上一層觸媒以利於碳管的生長,一般利用鎳、鈷、鐵、鈀等作為觸媒,再將其置入MPECVD中,通入甲烷及氫氣,以適當的條件成長出奈米碳管。之後再以SEM觀察其表面形貌、以TEM觀察其微結構及晶體結構鑑定、ESCA量測其成分及鍵結、Raman光譜儀鑑定其石墨化程度、EPR量測其未配對電子及自由基,並量測其場發射性質。
海膽狀結構在成長奈米碳管的過程中發現,這種特殊的結構具有很高的表面積,為提供能源儲存方面的適當材料;另外,在摻雜元素的奈米碳管中,因為具有較多的懸鍵以及未配對電子,因此外來分子較容易在碳管表面聚集而形成奈米點,此發現或許可提供一新的方法製備量子點,且可避免考慮晶格匹配的問題。

The remarkable structure, electrical, mechanical, and chemical properties of carbon nanotubes have generated great interests in many fields. It is especially interesting in the electrical property that carbon nanotubes may behave as metals or semiconductors depending on their diameters and helicity. It is therefore necessary to control the structure of carbon nanotubes precisely in order to make the applications in the devices. It is apparently not practical to acquire the electronic properties through the changing of the diameter and helicity of carbon nanotubes. The method of doping extraneous elements in carbon nanotubes has been undertaking to overcome the difficulty. Based upon the consideration, attempts were made to dope other elements into carbon nanotubes followed by the analysis and characterization.
Microwave plasma enhanced chemical vapor deposition (MPECVD) has been used to synthesize the carbon nanotubes and the carbon nanotubes with various dopants. A catalyst film, e.g. (Fe, Co, Ni, Pd, Pt) was first sputtered on the substrate to promote the growth of carbon nanotubes, then in the chamber of MPECVD, where the mixture gas of methane and hydrogen was introduced and simultaneously decomposed by the microwave to synthesize carbon-related nanotubes. For characterization, SEM was used to observe the surface morphology; TEM was used to observe the microstructure and to characterize the crystal structure; ESCA was used to analyze the chemical composition and bonding type; Raman spectrum was used to judge the degree of graphitization; EPR was used to measure the dangling bonds and unpaired electrons.
The growth of plasma sea urchins was found during the synthesis of carbon nanotubes. This unique morphology possesses a very high specific surface area and has been suggested as a potential storage material for hydrogen and lithium. Excessive dangling bonds were formed on the doped carbon nanotubes, on which adatoms are easily attached to the dangling bonds on the surface of CNTs to form quantum dots. A novel way to fabricate the metal quantum dots on the doped carbon nanotubes is being underway and the difficulty for choosing the substrate caused by the lattice constant mismatch can be avoided.

1. Overview of carbon nanotubes...............................1
1.1 Introduction.............................................1
1.2 Structure and electronic properties of carbon nanotubes..3
1.3 The doped carbon nanotubes...............................7
1.4 Production of carbon nanotubes..........................11
1.4.1 Arc discharge method..................................11
1.4.2 Laser vaporization....................................13
1.4.3 Chemical vapor deposition method......................14
1.5 The applications of carbon nanotubes..................17
1.5.1 Field emission display...........................18
1.5.2 interconnection.......................................20
1.5.3 Chemical sensor.......................................20
1.5.4 Energy storage........................................23
2. Literature................................................32
2.1 Nanostructures..........................................32
2.1.1 Nanowires.............................................32
2.1.2 Nanowalls.............................................35
2.1.3 Single-wall carbon nanohorn...........................38
2.2 Quantum dots............................................41
2.2.1 Growth mechanism of quantum dots......................42
2.2.2 Defects-induced dots array............................45
2.2.3 Application of quantum dots.........................48
3. Experimental and characterization.........................61
3.1 MPECVD..................................................61
3.2 Thin film of catalyst..................................63
3.3 The growth of carbon nanotubes.......................64
3.4 Doping carbon nanotubes.................................64
3.5 Characterization........................................65
3.5.1 Scanning electron microscope (SEM)....................65
3.5.2 Transmission electron microscope (TEM)................66
3.5.3 X-ray photoelectron spectroscopy (XPS)................67
3.5.4 Raman Spectroscopy....................................68
3.5.5 Electron paramagnetic resonance (EPR).................68
4. Analysis and characterization.............................72
4.1 carbon nanotubes........................................72
4.2 Plasma sea urchins......................................78
4.3 Doped carbon nanotubes and nanodots.....................87
5. Other related nanostructures-Molybdenum trioxide
nanorods..................................................101
6.Conclusions...............................................108
7. Future work..............................................110

[1] S. Iijima, Nature 354, 56 (1991).
[2] S. Iijima, T. Ichihashi, Nature 363, 603 (1993).
[3] D. S. bethane, C. H. King, M. S. Driess, G. Gorman, R.
Savoy, J. Vazquez, and R. Boyers, Nature 363, 605 (1993).
[4] P. Nikolaev, L. Lou, S. G. Kim, D. Tománek, P.
Nordlander, D. T. Colbert, and R. E. Smalley, Science
269, 1550 (1995).
[5] Z. F. Ren et al, Science, 282, 1105 (1998).
[6] R. Martel, T. Schmidt, H. R. Shea, T. Hertel, and Ph.
Avouris, Appl. Phys. Lett. 73, 2447 (1998).
[7] H. Dai, N. Franklin, and J. Han, Appl. Phys. Lett. 73, 1508
(1998).
[8] W. A. de Heer, A. Chatelaine, and D. Ugarte, Science 270,
1179 (1995).
[9] K. A. Dean, B. R. Chalamala, Appl. Phys. Lett. 75, 3017
(1999).
[10] D. Qian and E. C. Dickey, Appl. Phys. Lett. 76, 2868
(2000).
[11] Y. Cui, Q. Wei, H. Park, and C. M. Lieber, Science 293,
1289 (2001).
[12] M. M. Treachy, T. W. Ebbesen, and J. M. Gibson, Nature,
381, 678 (1996).
[13] R. S. Ruoff, and D. C. Lorents, Carbon, 33, 925 (1995).
[14] C. Liu, Y. Y. Fan, M. Liu, H. T. Cong, H. M. Cheng, and M.
S. Dresselhaus, Science, 286, 1127 (1999).
[15] C. Bower, O. Zhou, W. Zhu, D. J. Werder, and S. Jin, Appl.
Phys. Lett. 77, 2767 (2000).
[16] L. C. Qin, D. Zhou, A. R. Krauss, and D. M. Gruen, Appl.
Phys. Lett. 72, 3437 (1998).
[17] Y. Saito, T. Yoshikawa, M. Inagaki, M. Tomita, and T.
Hayashi, Chem. Phys. Lett. 204, 277 (1993).
[18] T. W. Ebbesen, and P. M. Ajayan, Nature, 358, 200 (1996).
[19] S. Seraphin and D. Zhou, Appl. Phys. Lett. 64, 2087,
(1994).
[20] A. Thess, R. Lee, P. Nikoleav, H. Dai, P. Petit, J.
Robert, C. Xu, Y. H. Lee, S. G. Kim, A. G. Rinzler, D. T.
Colbert, G. E. Scuseria, D. Tomanek, J. E. Fischer, and R.
E. Smalley, Science, 273, 433 (1998).
[21] T. Guo, P. Nikoleav, A. Thess, D. T. Colbert, R.E.
Smalley, Chem. Phys. Lett. 243, 49, (1995).
[22] Y. C. Choi, Y. M. Shin, Y. H. Lee, and B. S. Lee, Appl.
Phys. Lett. 2000, 76, 2367.
[23] Y. C. Choi, D. J. Bae, Y. H. Lee, and B. S. Lee, J. Vac.
Sci. Technol. A. 2000, 18. 1864.
[24] Mintmire, J. W. Dunlap, B. I. White, C. T. Phys. Rev.
Lett. 68, 631 (1992).
[25] Hamada, N. Sawada, S. Oshiyama, Phys. Rev. Lett. 68, 1579,
(1992).
[26] Saito, R. Fujita, M. Dresselhaus, G. Dresselhaus, Appl.
Phys. Lett. 60, 2204 (1992).
[27] Saito, R. Fujita, M. Dresselhaus, G. Dresselhaus, Phys.
Rev. B 46 1804 (1992).
[28] Teri Wang Odom, Jin-Lin Huang, Philip Kim, and Charles M.
Lieber, Nature, 391, 62 (1998).
[29] Jeroen W. G. Wildöer, Liesbeth C. Venema, Andrew G.
Rinzler, Richard E. Smalley, Cees Dekker, Nature, 391, 59
(1998).
[30] A. Rakitin, C. Papadopoulos, and J. M. Xu, Phys. Rev. B
61, 5793 (2000).
[31] X. Blasé, A. Rubio, S. G. Louie, and M. L. Cohen,
Europhys. Lett. 28, 355 (1994).
[32] X. Blasé, J.-C. Charlier, A. De Vita, and R. Car, Appl.
Phys. Lett. 70, 197 (1997).
[33] Y. Miyamoto, A. Rubio, M. L. Cohen, and S. G. Louie, Phys.
Rev. B 40, 4976 (1994).
[34] M. O. Watanabe, S. Itoh, T. Sasaki, and K. Mizushima,
Phys. Rev. Lett. 77, 187 (1996).
[35] Y. Miyamoto, A. Rubio, M. L. Cohen, and S. G. Louie, Phys.
Rev. B 50, 18360 (1996).
[36] D. L. Caroll, Ph. Redlich, X. Blasé, J. C. Charlier, S.
Curran, P. M. Ajayan, S. Roth, M. Rühle, Phys. Rev. Lett.
81 2332 (1998).
[37] Thomas W. Ebbesen, Carbon nanotubes: preparation and
properties, p142-143 (1997).
[38] A. Thess, R. Lee, P. Nikolaev, H. Dai, P. Petit, J.
Robert, C. Xu, Y. H. Lee, S. G. Kim, A. G. Rinzler, D. T.
Colbert, G. E. Scuseria, D. Tomanek, J. E. Fischer, and
R. E. Smalley, Science 273, 433 (1998).
[39] T. Guo, P. Nikolaev, A. Thess, D. T. Colbert, R. E.
Smalley, Chem. Phys. Lett. 243, 49 (1995).
[40] Tatsuya Lwasaki, Takio Motoi, and Tohru Den, Appl. Phys.
Lett. 75, 2044 (1999).
[41] Z. F. Ren, Z. P. Huang, J. W. XU, J. H. Wang, P. Bush, M.
P. Siegal, and P. N. Provencio, Science 282, 1105 (1998).
[42] K. A. Dean, B. R. Chalamala, Appl. Phys. Lett. 75, 3017
(1999).
[43] W. B. Choi, D. S. Chung, J. H. Kang, H. Y. Kim, Y. W. Jin,
I. T. Han, Y. H. Lee, J. E. Jung, N. S. Lee, G. S. Park,
J. M. Kim, Appl. Phys. Lett. 75, 3129 (1999).
[44] M. Bockrath, D. H. Cobden, P. L. Mceuen, N. G. Chopra, and
A. Zettle, Science 275, 1992 (1997)
[45] S. J. Trans, A. R. M. Verschueuren, and C. Dekker, Nature
393, 49 (1998).
[46] Xiao Yan Zhu, Seung Mi Lee, Young Hee Lee, and Thomas
Frauenheim, Phys. Rev. Lett. 85, 2757 (2000).
[47] Hyunju Chang, Jae Do Lee, Seung Mi Lee, and Young Lee,
Appl. Phys. Lett. 79, 3863 (2001).
[48] Ho Lee, Youn-Seon Kang, Seoung-Hoe Kim, and Jai-Young Lee,
Appl. Phys. Lett. 80, 577 (2002).
[49] O. Zhou, R. M. Fleming, D. W. Murphy, C. T. Chen, R. C.
Haddon, A. P. Ramirez, S. H. Glarum, Science 263, 1744
(1994).
[50] S. Suzuki, M. Tomita, J. Appl. Phys. 79, 3739 (1996).
[51] B. Gao, A. Kleinhammes, X. P. Tang, C. Bower, L. Fleming,
Y. Wu, O. Zhou, Chem. Phys. Lett. 307, 153 (1999).
[52] A. C. Dillon, K. M. Jones, T. A. Bekkedahl, C. H. Kiang,
D. S. Bethune, M. J. Heben, Nature, 386, 377 (1997).
[53] Seung Mi Lee and Young Hee Lee, Appl. Phys. Lett. 76, 2877
(2000).
[54] T. W. Ebbesen, Carbon Nanotubes —preparation and
properties, CRC Press, New York, 1997.
[55] R. Satio, G. Dresselhaus, and M. S. Dresselhaus, Physical
properties of carbon nanotubes, p36 (1998).
[56] B. I. Yakobson and R. E. Smalley, American Scientist 85,
324 (1997).
[57] Elena Bekyarova, Katsumi Kaneko, Masako Yudasaka,
Katsuyuki Murata , Daisuke Kasuya, and Sumio Iijima, Adv.
Mater. 14, 973 (2002).
[58] R. Saito, M. Fujita, G, Dresselhaus, and M. S.
Dresselhaus, Appl. Phys. Lett. 60, 2201 (1992).
[59] D. L. Carroll, Ph. Redlich, X. Blase, J.-C. Charlier, S.
Curran, P. M. Ajayan, S. Roth, and M. Ruhle, Phys. Rev.
Lett. 81, 2332 (1998).
[60] Jing Kong, Nathan R. Franklin, Chongwu Zhou, Michael G.
Chapline, Shu Peng, Kyeongjae Cho, Hongjie Dai, Science,
287, 622 (2000).
[61] C. Z. Li, H. X. He, A. Bogozi, J. S. Bunch, and N. J. Tao,
Appl. Phys. Lett. 76,1333 (2000).
[62] W. S. Shi, Y. F. Zheng, N. Wang, C.-S. Lee, Adv. Mater.
13, 594 (2001).
[63] K.-B. Lee, S.-M. Lee, Adv. Mater. 13, 517 (2001).
[64] C. J. Lee, T. J. Lee, S. C. Lyu, Y. Zhang, H. Ruh, and H.
J. Lee, Appl. Phys. Lett. 81, 3648 (2002).
[65] M. K. Sunkara, S. Sharma, R. Miranda, G. Lian, and E. C.
Dickey, Appl. Phys. Lett. 79, 1546 (2001).
[66] Michael P. Zach, Kwok H. Ng, Reginald M. Penner, Science,
290, 2120 (2000).
[67] Lawrence T. Scott, Margaret M. Boorum, Brandon J. McMahon,
Stefan Hagen, James Mack, Jarred Blank, Hermann Wegner,
Armin de Meijere. Science, 295, 1500 (2002).
[68] M. Chhowalla, A. I. munindraasa, and G. A. J. Amaratunga,
Appl. Phys. Lett. 70, 3233 (1997).
[69] Zs.Czigany, I.F. Brunell, J. Neidhardt, and L. Hultman,
and K. Suenaga, Appl. Phys. Lett. 79, 2639 (2001).
[70] Yihong Wu, Peiwen Qiao, Towchong Chong, and Zexiang Shen,
Adv. Mater. 14, 64 (2002).
[71] Elena Bekyarova, Katsuma Kaneko, Masako Yudasaka,
Katsuyuki Murata, Daisuke Kasuya, and Sumio Iijima, Adv.
Mater. 14, 973 (2002).
[72] Yugang Sun, Younan Xia. Science, 298, 5601 (2002).
[73] D. N. McIlroy, D. Zhang, Y. Kranov, and M. Grant Norton,
Appl. Phys. Lett. 79, 1540 (2001).
[74] R. S. Wagner, and W. C. Ellis, Appl. Phys. Lett. 4, 89
(1964).
[75] P. Scheier, B. Marsen, M. Lonfat, W. D. Schneider, and K.
Ssttler, Surf. Sci. 458, 113 (2000).
[76] W. Han, S. Fan, Q. Li, and Y. Hu, Science, 277, 1287
(1997).
[77] Yang-Tse Cheng, Anita M. Weiner, Curtis A. Wong, Michael
P. Balogh, and Michael J. Lukitsch, Appl. Phys. Lett. 81,
3248 (2002).
[78] C. N. R. Rao, A. Govindaraj, F. Leonard Deepak, N. A.
Gunari, and Manashi Nath, Appl. Phys. Lett. 78, 1853
(2001).
[79] D. P. Yu, Z. G. Bai, J. J. Wang, Y. H. Zou, W. Qian, J. S.
Fu, H. Z. Zhang, Y. Ding, and S. Q. Feng, Phys. Rev. B 59,
2498 (1999).
[80] D. D. D. Ma, C. S. Lee, Y. Lifshitz, and S. T. LeeAppl.
Phys. Lett. 81, 3233 (2002)
[81] F. J. Himpsel, J. E. Ortega, G. J. Mankey, and R. F.
Willis, Adv. Phys. 47, 511 (1998).
[82] P. Gambardella, A. Dallmeyer, K. Maiti, M. C. Malagoli, W.
Eberhardt, K. kern, and C. Carbone, Nature, 416, 301
(2002).
[83] R. P. Cowburn and M. E. Welland, Science, 287, 1466 (2000).
[84] D. A. Allwood, Gang Xiaong, M. D. Cooke, C. C. Faulkner,
D. Atkinson, N. Vernier, and R. P. Cowburn, Science, 296,
2003 (2002).
[85] S. C. Jian, M. Willander, J. Narayan, and R. Van
Overatraeten, J. Appl. Phys. 87, 965 (2000).
[86] C. C. Chen, C. C. Yen, C. H. Chen, M. Y. Yu, H. L. Liu, J.
J. Wu, K. H. Chen, L. C. Chen, J. Y. Peng, and Y. F. Chen,
J. Am. Chem. Soc, 123, 2791 (2001)
[87] M. H. Huang, S. Mao, H. Feick, H. Q. Yan, Y. Y. Wu, H.
Kind, E. Weber, R. Russo, and P. D. Yang, Science, 292,
1897 (2001).
[88] Lifeng Dong, Jun Jiao, David W. Tuggle, and Jeremy M.
Petty, Appl. Phys. Lett. 82, 1096 (2003).
[89] Yang-Tse Cheng, Anita M. Weiner, Curtis A. Wong, Michael
P. Balogh, and Michael J. Lukitsch, Appl. Phys. Lett. 81,
3248 (2002).
[90] Jin-Ho Ahn, Nam-Ki Min, Tun-Hi Lee, and Byeong-Kwon Ju,
Appl. Phys. Lett. 81, 745 (2002)
[91] Jun Chen, S. Z. Deng, N. S. Xu, Suhua Wang, Xiaogang Wen,
Shihe Yang, Chunlei Yang, Jiannong Wang, and Weikun Ge,
Appl. Phys. Lett. 80, 3620 (2002)
[92] Z. S. Wu, S. Z. Deng, N. S. Xu, Jian Chen, J. Zhou, and
Jun Chen, Appl. Phys. Lett. 80, 3829 (2002).
[93] E. Bauer, Z. Kristallogr. 110, 372 (1958)
[94] F.C. Faank and J. H. van der Merwe, Proc. Roy. Soc. London
A 198, 205 (1949).
[95] M. Volmer and A. Weber, Z. Phys. Chem. 119, 277 (1926).
[96] D. J. Eaglesham and M. Cerullao, Phys. Rev. Lett. 64, 1943
(1990).
[97] H. J. Marmin, P. H. Guethner, and D. Rugar, Phys. Rev.
Lett. 65, 2418 (1990).
[98] D. M. Eigler and E. K. Schweizer, Nature, 344, 524 (1990).
[99] Y. H. Xie, S. B. Samavedam, M. Bulsara, T. A. Langdo, and
E. A. Fitzgerald, Appl. Phys. Lett. 71, 3567 (1997).
[100] Choongseop Lee and Albert- Laszlo Barabasi, Appl. Phys.
Lett. 73, 2651 (1998).
[101] C. S. Lent and P. D. Tougaw, Proc. IEEE, 85, 541 (1997).
[102] C. S. Lent and P. D. Tougaw J. Appl. Phys. 75, 4077
(1994).
[103] Islamshah Amlani, Alexei O. Orlov, Ravi K. Kummamuru,
Gary H. Bernstein, Craig S. Lent, and Gregory L. Snider,
Appl. Phys. Lett. 77, 738 (2000).
[104] Semiconductor devices Physics and Technology
[105] D. L. Huffaker, G. Park, Z. Zou, O. B. Shchekin, and D.
G. Deppe, Appl. Phys. Lett. 83, 2564 (1998).
[106] M. V. Maximov, Zh. I. Alferov, N. N. Ledentsov, D.
Bimberg, A. O. Kosogov, and P. Werner, Appl. Phys. Lett.
83, 5561 (1998).
[107] Y. Arakawa and H. Sakaki, Appl. Phys. Lett. 40, 939
(1982).
[108] H. Benisty, C. Sottomayor-Torres, and C. Weisbuch, Phys.
Rev. B, 44, 10945 (1991).
[109] S. Kim, H. Mohseni, M. Erdtmann, E. Michel, C. Jelen, and
M. Razeghi, Appl. Phys. Lett. 73, 963 (1998).
[110] Chunwin Ji and Peter C. Searson, Appl. Phys. Lett. 81,
4437(2002).
[111] Yang-Tse Cheng, Anita M. Weiner, Curtis A. Wong, Michael
P. Balogh, and Michael J. Lukitsch, Appl. Phys. Lett. 81,
3248 (2002).
[112] C. J. Lee, T. J. Lee, S. C. Lyu, Y. Zhaag, H. Ruh, and H.
J. Lee, Appl. Phys. Lett. 81, 3648 (2002).
[113] T. I. Kamins, X. Li, and R. Stanley Williams, Appl. Phys.
Lett. 82, 263 (2003).
[114] S. Dhara, A. Datta, Y. L. Wang, L. C. Chen, and C. W.
Hsu, Appl. Phys. Lett. 82, 451 (2003).
[115] Y. Q. Wang and X. F. Duan, Appl. Phys. Lett. 82, 272
(2003).
[116] Elena Bekyarova, Katsumi Kaneko, Masako Yudasaka,
Katsuyuki Murata, Daisuke Kasuya, and Sumio Iijima, Adv.
Mater. 14, 973 (2002).
[117] L. C. Qin, D. Zhou, A. R. Krauss, and D. M. Gruen, Appl.
Phys. Lett. 72, 3437 (1998).
[118] Young Chul Choi, Young Min Shin, Young Hee Lee, and Byung
Soo Lee, Appl. Phys. Lett. 76, 2367 (2000).
[119] Won Bong Choi, Gyecong-Su Park, and Young Chul Choi, J.
V. Sci. Technol. A, 1864 (2000).
[120] C. J. Lee, J. H. Park, J. M. Kim, Y. Hu. Y. Lee, and K.
S. No, Chem. Phys. Lett. 327, 277 (2000).
[121] C. J. Baddley et al., Surf. Sci. 400, 166 (1998).
[122] Zhong Lin Wang, Yi Liu, and Ze Zhang, Handbook of
Nanophase and Nanostructured Materials, Volume 2.
[123] V. I. Merkulov, D. H. Lowndes, Y. Y. Wei, G. Eres, and E.
Voelkel, Appl. Phys. Lett. 76, 3555 (2000).
[124] Chris Bower, Otto Zhou, Wei Zhu, D. J. Werder, and Sungho
Jin, Appl. Phys. Lett. 77, 2767 (2000)
[125] Yusuke Moriyoshi, Yoshiki Shimizu, Takayuki Watanabe,
Thin solid Films, 390, 26 (2001).
[126] R. T. K. Baker and P. S. Harris, in Chemistry and Physics
of Carbon, edited by P. L. Walker, Jr. and P. A. Thrower
(Marcel Dekker, New York, 1978), pp. 83-161.
[127] G. G. Tibbetts, J. Cryst. Growth, 66, 632 (1984).
[128] Oleg A. Louchev, Yochiro Sato, and Hisao Kanda, Appl.
Phys. Lett. 80, 2752 (2002).
[129] V. Merkulov, A. V. Melechko, M. A. Guillorn, D. H.
Lowndes, and M. L. Simpson, Appl. Phys. Lett. , 79, 2970
(2001).
[130] Y. Show, F. matsuoka, M. Hayashi, H. Ito, M. Iwase, and
T. Izumi, J. Appl. Phys. 84 6351 (1998).
[131] H. Yokomichi, T. Hayashi, and A. Masuda, Appl. Phys.
Lett. 72, 2704. (1998).
[132] Z. Hussain, J. Mater. Res. 16, 2695 (2001).
[133] M. Ferroni, V. Guidi, G. Martinelli, M. Sacerdoti, P.
Nelli, and G. Sberveglieri, Sens. Actuators B 48, 285
(1998).
[134] H. C. Zeng, Inorg. Chem. 37, 1967 (1998).
[135] M. Hershfinkel, L. A. Gheber, V. Volterra, J. L.
Hutchison, L. Margulis, and R. Tenne, J. Am. Chem. Soc.
116, 1914 (1994).
[136] Y. Feldman, E. Wassernman. D. J. Srolovitz, and R. Tenne,
Science 267, 222 (1995).
[137] P. J. Hagrman, D. Hagrman, and J. Zubieta, Angew. Chem.
Int. Ed. Engl. 38,2638 (1999). 

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔