跳到主要內容

臺灣博碩士論文加值系統

(44.201.97.0) 您好!臺灣時間:2024/04/19 12:58
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:張志仲
研究生(外文):Chih-Chung Chang
論文名稱:高頻元件用陶瓷材料之研究
論文名稱(外文):Studying of ceramic materials applied to high-frequency devices
指導教授:金重勳金重勳引用關係林正雄林正雄引用關係
指導教授(外文):Tsung Shune ChinCheng-Hsiung Lin
學位類別:碩士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2003
畢業學年度:91
語文別:中文
論文頁數:126
中文關鍵詞:低介電陶瓷鋇長石微波量測固態反應法釔鐵柘榴石微波誘導燃燒法
外文關鍵詞:low dielectric constant materialscelsianmicrowave measurementsolid state reaction methodyttrium iron garnetmicrowave-induced combustion method
相關次數:
  • 被引用被引用:2
  • 點閱點閱:230
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在本研究中,兩種用於高頻元件的陶瓷材料被合成與探討。
[a]低介電微波構裝陶瓷
為了應用於高性能陶瓷構裝,並降低生產成本,本研究以固態反應法製做(SrxBa1-x)O-Al2O3-2SiO2-yB2O3(x:莫爾分率;y:重量比)陶瓷體,研究其可燒結性及微波特性。鍶離子在本系統中,具有降低熔點及抑制六方晶相生成等效果。本研究以BaO-Al2O3-SiO2其最低共晶點溫度為起點,先添加氧化鍶,利用共晶效應降低其熔點,再添加氧化硼,增加試片可燒結性。並探討不同鍶取代量、氧化硼添加量對燒結體的相對密度、相變化、熱膨脹係數、介電常數及品質因子的關係。
實驗結果顯示,鍶離子添加除了有促進緻密化的效果,亦可增進此系統中BaAl2Si2O8六方晶轉變成單斜晶的轉換率,其中以x=0.375最佳,可達46.7%。此成分的熱膨脹係數亦最低,只有5.718×10-6/℃。此系統中鍶離子添加量對介電常數的影響,幾乎和對緻密化的影響相同,緻密化程度越高,介電常數越高。Q×f值以x=0.250最高,達4000 GHz。氧化硼的添加可有效降低燒結溫度,並改善其高頻特性,其中以(x=0.000; y=2)具有最佳的Q×f值,達6700 GHz。
與以前學者以玻璃法製作比較,本系統之熱膨脹性及介電常數與之相仿,Q×f值較為優異,但製程及成本簡化很多。
[b]微波陶鐵瓷體
本研究以微波誘導燃燒法製備釔鐵柘榴石粉末,探討燃料加入量、熱處理時間對生成粉末的影響,並將此燃燒粉生成之粉末成型燒結,探討其燒結特性,最後與固態反應法製做比較。
研究結果顯示,尿素加入量與生成粉體粒徑有關,尿素量越多,燃燒溫度越高,生成粉體粒徑越大。尿素加入量剛好為化學計量時(YIG-1),會獲得無明顯結晶相之粉末,此時表面積為16.63 m2/g。加入量為3倍量時,可獲得具結晶相之粉末,表面積為1.64 m2/g。上述粉體以1125℃及950℃熱處理,即可獲得無二次相之柘榴石粉末。
成型燒結後,YIG-1試片於1425℃可達99.90%緻密,其導磁率為7.31 (1GHz),Hc為0.502 Oe,Br為729.2 Guass。施加2小時的機械活化於燃燒生成粉體,可有效降低試片燒結溫度。
以固態反應法製做YIG,需以1200℃煅燒,其燒結溫度為1425℃,可達98.65%緻密。其導磁率為7.36 (1GHz),Hc為0.487 Oe,Br為732 Guass。
微波誘導燃燒法的提出,為合成氧化物材料提供了多樣性的選擇。燃燒生成的粉末,具有低溫煅燒成柘榴石相,及降低燒結溫度等優點。其磁性質與固態反應法製做相近,但粉體合成較簡便且快速。

Abstract
In this research, two kinds of material for components of high frequency communication have been synthesized and evaluated.
[a]Low dielectric constant materials
To develop a low-loss, lead-free, non-alkali, low cost substrate material for microwave/microelectronics applications, composites in the (SrxBa1-x)O-Al2O3-2SiO2-yB2O3 system (x in molar ratio while y in wt%) were explored. The solid-state reaction route was successfully used to prepare the ceramics. Thermal characteristics, microstructure, phase transformation and dielectric properties were studied with the addition of SrO and B2O3. An appropriate addition of SrO helps to enhance the transformation from hexacelsian to celsian, and besides effectively reduces thermal expansion coefficient of the ceramics. The addition of B2O3 was successful to increase sinterability.The (Sr0.375Ba0.625)O-Al2O3-2SiO2 ceramic has the lowest average thermal expansion coefficient (5.718×10-6/℃) and the highest degree of transition (46.7%) from hexacelsian to monocelsian. The (Sr0Ba1)O-Al2O3-2SiO2- 2wt% B2O3 ceramic possesses dielectric constant of 6.028, and Q×f of 6700 GHz which is higher than the value reported in literature.
[b]Ferrimagnetic material
The purpose of this work was to obtain yttrium iron garnet powder by microwave-induced combustion method. The powder was obtained from nitrate salt solution by controlling the amounts of urea (fuel). This study showed that the controlled amounts of urea have a great effect on particle size. The combustion synthesis of stoichiometric urea (YIG-1) resulted in amorphous powder with high surface area (16.63 m2/g). The triple urea (YIG-3) batches resulted in crystalline powder with low surface area (1.64 m2/g). Sintering at 1425℃-6hr, YIG-1 ceramics have larger theoretical density (99.90%) than those of solid-state-reacted powder (98.65%). Remanent magnetization (Br) and coercive force (Hc) decreases with sintering temperature, basically due to the increases in sintered density for the materials. The combustion method leading to powders with decreased calcining temperature and lower the sintering temperature necessary for densifying the materials proves to be a versatile means.

目 錄
圖表索引
第1章 前言
1-1 應用於高頻的低介電微波構裝陶瓷
1-2 應用於高頻的微波陶鐵瓷體
第2章 文獻回顧
2-1 微波構裝陶瓷簡介
2-2 微波介電材料性質說明
2-2-1 介電常數之定義
2-2-2 介電品質因子之定義
2-2-3 共振頻率溫度係數之定義
2-3 微波性質量測方法
2-3-1 平行板介質圓柱共振法
2-3-1-1 介電常數量測
2-3-1-2 介電品質因子量測
2-3-1-3 電磁波共振模態圖的使用方法
2-3-2 空腔共振法
2-4 BaO-Al2O3-SiO2系統微波陶瓷相關文獻
2-5 鐵氧磁體結構及特性
2-5-1 鐵氧磁體的磁性起源
2-5-2 磁交換作用力的種類
2-5-3 柘榴石的結晶結構
2-5-4 磁陀效應
2-5-5 柘榴石之微波特性
2-6 燃燒合成法
2-6-1 以SHS法製備材料
2-6-2以SSM法製備材料
2-6-3以火焰合成法製備材料
2-6-4氧化還原複合物及混合物燃燒合成製備氧化物材料
第3章 固態反應法製作(SrxBa1-x)O-Al2O3-2SiO2陶瓷體研究其燒結、熱膨脹及微波特性
3-1 實驗步驟
3-1-1 鍶鋇鋁矽氧陶瓷體試片準備
3-1-2 鍶鋇鋁矽氧陶瓷體再添加不同比例B2O3的試片
3-2 性質量測
3-2-1 熱重/熱插分析儀分析
3-2-2 XRD分析
3-2-3 密度量測
3-2-4 熱機械分析計量測
3-2-5 SEM分析
3-2-6 高頻電性量測
3-3 實驗結果與討論
3-3-1 TG/DTA分析
3-3-2 X光繞射分析
3-3-3 熱膨脹係數測定
3-3-4 SEM 分析
3-3-5 微波性質量測
第4章 以微波誘導法製備釔鐵柘榴石粉末並研究其燒結性質
4-1 實驗步驟
4-1-1 以微波誘導燃燒法製備釔鐵柘榴石粉末
4-1-2 以固態反應法製備釔鐵柘榴石粉末之試片準備
4-2 性質量測
4-2-1 BET表面積測試
4-2-2 熱重/熱差分析
4-2-3 SEM觀察
4-2-4 X光繞射分析
4-2-5 密度量測
4-2-6 磁滯曲線量測
4-2-7 RF阻抗分析儀
4-3 實驗結果與討論
4-3-1 燃燒合成法與固態反應法製備YIG粉體性質之差異
4-3-2 不同溫度煅燒YIG粉體的XRD分析
4-3-3 性質量測
第5章 結論
第6章 參考文獻
第7章 附錄

1、Rao R. Tummala, 〝Ceramic and Glass-Ceramic Packaging in the 1990s〞, J. Am. Ceram. Soc. 74, 5 895-908﹛1991﹜.
2、F. Bertaut and F. Forrat, 〝The Structure of Ferrimagnetic Ferrite of the Rare Earths〞, compt. Rend., 242, 382﹛1956﹜.
3、S. Geller and M.A. Gilleo, 〝The Crystal Structure and Ferrimagnetisms of Yttrium Iron Garnet〞, Acta Crys., 10, 239﹛1957﹜.
4、C.E. Patton,〝Microwave Properties of Fine Grain Polycrystalline Yttrium Iron Garnet〞, J. Appl. Phys., 41, 1355﹛1970﹜.
5、C.E. Patton,〝Effect of Grain Size on the Microwave Properties of Polycrystalline Yttrium Iron Garnet〞, J. Appl. Phys., 41, 1637﹛1970﹜.
6、A.E. Paladino and E.A. Maguire,〝Microstructure development in Yttrium Iron Garnet〞, J. Am. Ceram. Soc., 53, 98﹛1970﹜.
7、G.R. Blair and A.C.D. Chaklaldelrl L.,〝Reactively Hot-Pressed Yttrium Iron Garnet〞, Mat. Res. Bull., 8, 161﹛1973﹜.
8、Om Prakash and C.M. Srjivastava,〝Open Die Hot Pressing of Yttrium Iron Garnet〞, Mat. Res. Bull., 15, 665﹛1980﹜.
9、M. Multani, N.G. Nanadikar, N. Venkataramani, V. Ragupathy, A.K. Pansare and A. Gurjar, 〝Hot Sprayed Yttrium Iron Garnet〞, Mat. Res. Bull., 14, 1251-1258﹛1979﹜.
10、K. Ravindran Nair,〝Thermoanalytical Studies on Coprecipitated Hydroxides and Carbonates of Yttrium and Iron (Fe+3)〞, Ceram. Bull., 60, 6, 626﹛1981﹜.
11、S.G. Gokarn, V.R. Palkar and M.S. Mulatni,〝Submicro YIG Microstructure and Ferrimagnetic Resonance Linewidth〞, Mat. Res. Bull., 17, 987-962﹛1982﹜.
12、M.S. Multani, D.K. Sharma, V.R. Palker, S.G. Gokarn and A. Gurjar,〝Activation Energy for Microcrystalline YIG〞,Mat. Res. Bull., 16,1535-1540﹛1981﹜.
13、A.G. Merzhanov, B.I. Khaikin, 〝Theory of Combustion Waves in Homogeneous Media〞, Progress in Energy and Combustion Science, 14, 1, 1 ﹛1988﹜.
14、A.S. Mukasyan, S. Hwang, A.E. Sytchev, A.S. Rogachev, A.G. Merzhanov, A. Varma, 〝Combustion Wave Microstructure in Heterogeneous Gasless Systems〞, Combustion Science and Technology, 115, 4-6, 335 ﹛1996﹜.
15、Z.A. Munir, J.B. Holt,〝Combustion and Plasma Synthesis of High Temperature Materials〞,VCH Published, New York﹛1990﹜.
16、陳聰文、傅坤福,〝LTCC材料多層製程開發及其應用〞,工業材料148期,88年4月,120-133頁。
17、許正源,〝積層式通訊模組的材料技術〞,工業材料148期106-114,88年4月。
18、石啟仁及林慧霓,〝LTCC之內埋式高頻介電材料技術〞,工業材料,176期,125-131,90年8月。
19、W.D. Kingery, H.K. Bowen, D.R. Uhlmann, “Introduction to Ceramics 2nd Edition”, John Wiley & Sons, Inc. (1975).
20、B.W. Hakki and P.D. Coleman, “A Dielectric Resonator Method of Measuring Inductive Capacties in the Millimeter Range”, IRE. Transactions on Microwave Theory and Technique., July, p402-410 (1960)
21、William E. Courtney, “Analysis and Evaluation of a Method of Measuring the Complex Permittivity and Permeability of Microwave Insulators”, IEEE Transactions on Microwave Theory and Technique. , vol. MTT-18, NO.8, August, p476-485 (1970).
22、Ubic, M. Reaney, and W. E. Lee, ”Microwave Dielectric Solid-solution Phase in System BaO-Ln2O3-TiO2 (Ln = lanthanide cation)”, International Materials Reviews Vol.43 No.5 205(1998).
23、Denesk C. Dube, Rudolf Zurmuhlen, Andrew Bell, and Nava Setter, “Dielectric Measurements on High-Q Ceramics in the Microwave Region”, J. Am. Ceram. Soc., 80 [5], pp.1095-1100 (1997).
24、Yoshio Kobayshi and Shuzo Tanaka, ”Resonant Modes of a Dielectric Rod Resonator Short-Circuited at Both Ends by Parallel Conducting Plates”, IEEE Transactions on Microwave Theory and Technique, vol. MTT-28, NO.10, October, p1077-1085 (1980).
25、Yoshio Kobayshi, Takayuki Aoki and Yukimasa Kabe, ” Microwave Measurement Of Dielectric Properties of Low-Loss Materials by the Dielectric Rod Resonator Method”, IEEE Transactions on Microwave Theory and Technique, vol. MTT-33, NO.7, July, p586-592 (1985).
26、Yoshio Kobayshi, Takayuki Aoki and Yukimasa Kabe, ”Influence of Shields on the Q-Factors of a TE0 Dielectric Resonator”, IEEE Transactions on Microwave Theory and Technique, vol. MTT-33, NO.12, December, p1361-1366 (1985).
27、David M. Pozar, “Microwave Engineering 2nd Edition”, John Wiley &Sons, Inc. (1998).
28、R.D. Richtmyer, “Dielectric Resonator”, J. Appl. Phys., v.10, p.191﹛1939﹜.
29、謝建國,〝氧化鉍添加劑對鋇釹鈦高頻用介電陶瓷之影響〞,國立清華大學碩士論文,2002
30、李彥志,〝積層微波介電濾波器之設計與製作〞,國立清華大學碩士論文,2001
31、施威任,〝高頻用玻璃性質與介電陶瓷添加之研究〞,國立清華大學碩士論文,2001
32、L.T. Buranov and I.F. Shchegoler, “Translated from Pribory I Tekimilon Eskperiments”, n.2, p.171﹛1971﹜.
33、N.P. Bansal, M.J. Hyatt and C.H. Drummond, Ceram. Eng. Sci. Proc., 12, 1222﹛1991﹜.
34、J.C. Debsikdar and O.S. Sowemino, J. Mater. Sci., 27, 5320﹛1992﹜.
35、V.S.R. Murthy, M.W. Pharaoh and M.H. Lewis, Meter. Lett., 10﹛1990﹜.
36、M.C. Guillemvillai, C. Guillem, A. Monzonis and A.J. Navavio, Trans. Br. Ceram. Soc., 82, 69﹛1983﹜.
37、D. Bahat, 〝Kinetic Study of the Hexacelsian-Celsian Phase Transformation〞, J. Mater. Sci., 5, 9, 805-810﹛1970﹜
38、M. Chen, W.E. lee and P.F. James, 〝Synthesis of monoclinic celsian glass-ceramic form alkoxides〞, J. Non-Cryst. Solids, 147, 532-536﹛1992﹜
39、W.E. Lee, M. Chen and P.F. James, 〝Crystallization of Celsian (BaAl2Si2O8) Glass〞, J. Am. Ceram. Soc., 78, 8, 2180-2186 ﹛1995﹜
40、C. Liu, S. Komarneni and R. Roy, 〝Crystallization and Seeding Effect in BaAl2SiO8 Gels〞, J. Am. Ceram. Soc., 78, 9, 2521-2526﹛1995﹜
41、N. Frety, A. Taylor and M.H. Lewis, 〝Microstructure and Crystallization Behavior of Sol-Gel Derived 1/2SrO-1/2BaO-Al2O3 -2SiO2 Glass Ceramic〞, J. Non-Cryst. Solids, 195, 28-37﹛1996﹜
42、W. Zhou, L. Zhang and J. Yang, 〝Preparation and Properties of Barium Aluminosilicate Glass-Ceramics〞, J. Mater. Sci., 32, 4833-4836﹛1997﹜
43、N.P. Bansal,〝Solid State Synthesis and Properties of Monoclinic Celsian〞, J. Mater. Sci., 33, 4711-4715﹛1998﹜
44、S. Boskovic, D. Kosanovic, Dj. Bahloul-Hourlier, P. Thomas and S.J. Kiss, 〝Formation of Celsian from Mechanically Activated BaCO3-Al2O3-SiO2 Mixtures〞, J. Alloys and Comp., 290, 230-235﹛1999﹜
45、J.E. Planz, H. Muller-Hesse,〝Untersuchungen uber Festkorperreak- tionen im System BaO-Al2O3-SiO2 Teil II : Uber die Celsianbildung durch Festkorperreaktioned〞, Ber. Detsch. Keram. Ges. 40, H3, 191-200﹛1963﹜
46、E. Kostic, S. Kiss, S. Boskovic,〝Decrease of MgAl2O4 formation temperature〞, Powder Technol. 92, 271-274﹛1997﹜
47、Balaz, T. Havlik, J. Brinacin, R. Kammel,〝Non-stoichiometric niobium sulfide synthesized by mechanochemical route〞, J. Mater. Sci. Lett. 15, 1161-1163﹛1986﹜
48、E. Kostic, S. Kiss, S. Boskovic, S. Zec,〝Mechanical activation of the gamma to alpha transition on Al2O3〞, Powder Thchnol. 91, 49-54﹛1997﹜
49、E. Kostic, S. Kiss, S. Boskovic, S. Zec,〝Mechanical activated transition of anatase to rutile〞, Am. Ceram. Soc. Bull., 76, 60-64﹛1997﹜
50、Y. Sung and J.W. Ahn,〝Sintering and crystallization of off-stoichiometric BaO-Al2O3-SiO2 glasses〞, J. Mater. Sci., 35, 4913-4918﹛2000﹜
51、林諭男,”微波磁性材料及元件簡介”,工業材料105 期,61-71(1995)
52、唐敏注,”通訊用軟磁材料之特性及應用”,工業材料105 期,42-50(1995)
53、Robert M. white, “Quantum Theory of Magnetism”, McGraw-Hill﹝1970﹞
54、E. Levin, et al., Phase Diagram for Ceramists, Fig. 4544, The American Ceramic Society, Inc., Vol. 3,﹛1975﹜.
55、E. Levin, et al., Phase Diagram for Ceramists, Fig. 755, The American Ceramic Society, Inc., Vol. 1,﹛1964﹜.
56、黃宏麟,〝Cordierite 系玻璃陶瓷之燒結與微波性質之研究〞,國立清華大學材料系碩士論文,1998
57、施威任,〝高頻用玻璃性質與介電陶瓷添加之研究〞,國立清華大學材料系碩士論文,2001
58、川和 之二,〝奈米科技〞,工業技術研究院
59、傅彥培,〝以微波誘導燃燒法製備奈米及磁性氧化物粉體之研究〞,國立清華大學材料系博士論文,2003
60、蘇鈺修,〝以微波誘導燃燒法製備Li-Mn-M-O(M=Co、Cr)鋰離子二次電池正極材料之研究〞,國立清華大學材料系碩士論文,2003
61、K. C. Patil, S. T. Aruna and S. Ekambaram, “Combustion synthesis”, Solid State & Materials Science, 2, 158-165, ﹛1997﹜

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top